JUNE 24, 2025, (REVISED 6/25/2025)

REPORT OF HAZARDOUS MATERIAL ASSESSMENT FOR

Former Dollar Rent-A-Car at
Birmingham-Shuttlesworth International Airport
5600 Airline Drive
Birmingham, Jefferson County, Alabama 35212

BECC Project Number: 325049


PREPARED FOR:

AKRF C/O Ms. Jennifer Hogan 440 Park Avenue South, 7th Floor New York, New York 10016

GEOTECHNICAL, MATERIALS, AND ENVIRONMENTAL ENGINEERS

360 Industrial Lane, Birmingham, AL 35211 - (205) 941-1119 - www.beccinc.com

EXECUTIVE SUMMARY

The purpose of this survey was to identify hazardous substances storage and use, sample suspect materials as asbestos-containing building materials, and sample painted surfaces to determine elevated lead concentrations in paint. Portions of this survey/assessment were performed pursuant of the USEPA 40 CFR Part 61 NESHAP and Part 763 AHERA/ASHARA guidelines. This assessment included all reasonably accessible spaces throughout the approximate 3,400 square foot (sf) former Dollar Rent-A-Car at the Birmingham-Shuttlesworth International Airport located at 5600 Airline Drive in Birmingham, Alabama. It is our understanding the building is planned for demolition.

ALL materials assessed were classified as non-ACM.

No painted surfaces sampled during the assessment contained elevated lead concentrations.

No hazardous <u>building</u> materials were identified during this assessment; therefore, no abatement is recommended at this time. Of the machinery identified as part of the demolition scope, none were confirmed to contain hazardous materials/chemicals, but may require special handling and disposal. These items were noted as:

POTENTIAL PCBs

- 1. Pad-Mounted Transformer (potential PCBs) (1 ea.)
- 2. Fluorescent Light Fixtures (35 ea.)
- 3. Other Light Fixtures (metal halide, etc.) (14 ea.)
- 4. Exit Signs (3 ea.)

POTENTIAL MERCURY

- 5. Fluorescent Light Tubes (92 ea.)
- 6. Other Light Fixture Bulbs (14 ea.)
- 7. Exit Signs (3 ea.)
- 8. Thermostats (2 ea.)

All items that will be removed should be disposed of or recycled in accordance with applicable state and federal regulations.

The parking lot area of the Property was observed to have storage of various equipment, materials, and chemicals for Airport Operations. These items will be removed by the Airport Authority prior to demolition.

The radon levels for the building are expected to be between 2 pCi/L and 4.0 pCi/L based on reported levels in Jefferson County by the ADPH, below the action limit set forth by the USEPA.

ACRONYMS AND ABBREVIATIONS

ACBM – Asbestos-Containing Building Material

ACM – Asbestos-Containing Material

ADEM – Alabama Department of Environmental Management

ALAC - Alabama Administrative Code

ALDOT – Alabama Department of Transportation

AHERA – Asbestos Hazard Emergency Response Act

APCO - Alabama Power Company

ASHARA – Asbestos School Hazard Abatement Reauthorization Act

ASTM – American Society for Testing and Materials

BUR – Built-Up Roofing Material

CFC - Chlorofluorocarbons

E - East

EPE – El Paso Electric

ENE – East-Northeast

ESE – East-Southeast

ESA – Environmental Site Assessment

FEMA – Federal Emergency Management Agency

ft - Feet

HMA – Hazardous Material Assessment

HSWA – Hazardous and Solid Waste Amendments

HTW – Hazardous and Toxic Waste

HUD – Housing and Urban Development

HVAC – Heating Ventilation and Air Conditioning

kg – Kilogram

LBP - Lead-Based Paint

mi - Mile

N - North

NAICS - North American Industry Classification System

NE - Northeast

NESHAP – National Emission Standard for Hazardous Air Pollutants

NW - Northwest

PA - Preliminary Assessment

PADS – PCB Activity Data System

Pb - Lead

PCB – Polychlorinated Biphenyls

pCi/L - Pico Curies Per Liter

PRP - Potentially Responsible Party

RCRA – Resource Conservation and Recovery Act

RCRIS – Resource Conservation and Recovery

Information System

SDS – Safety Data Sheets (formerly Material Safety Data Sheets)

sf – Square Feet

SSW - South-Southwest

SW – Southwest

TCLP – Toxicity Characteristic Leaching Procedure

TSCA - Toxic Substances Control Act

W - West

WJC - Wall Joint Compound

Table of Contents

SECTION 1: INTRODUCTION. 1.1 Purpose 1.2 Reliance 1.3 Detailed Scope of Services 1.4 Assumptions and Limitations 1.5 Terms & Conditions of Assessment 1.5.1 ACM Survey Terms & Conditions 1.5.2 LBP Survey Terms & Conditions	. 1 . 1 . 2 . 3
SECTION 2: PROJECT DESCRIPTION 2.1 Property Description	
SECTION 3: ASBESTOS-CONTAINING MATERIAL (ACM). 3.1 Definitions	. 4 . 5 . 5 . 5
SECTION 4: LEAD-BASED PAINT (LBP) 4.1 Definitions 4.2 Inspection 4.2.1 Procedure 4.2.2 Laboratory 4.3 Findings & Conclusions	. 7 . 7 . 7
SECTION 5: OTHER POTENTIALLY HAZARDOUS SUBTANCES 5.1 Polychlorinated Biphenyls (PCBs) 5.2 Chlorofluorocarbons (CFCs) 5.3 Mercury 5.4 Radon 5.5 Miscellaneous Hazardous Substances	. 8 . 9 . 9
SECTION 6: FINDINGS	.0
SECTION 7: CONCLUSIONS & RECOMMENDATIONS	.0
SECTION 8: PROFESSIONAL SIGNATURES	1

SECTION 9: HAZARD ASSESSMENT FACTORS	12
9.1 Asbestos-Containing Materials (ACM)	
9.2 Lead-Based Paint (LBP)	
9.3 Other Potentially Hazardous Substances	
9.3.1 Polychlorinated Biphenyls (PCB's)	13
9.3.2 Chlorofluorocarbons (CFCs)	13
9.3.3 Mercury	13
9.3.4 Radon	13
9.3.5 Miscellaneous Hazardous Substances	13
SECTION 10: CLOSING	14

LIST OF TABLES

Table 1: List of Functional Spaces & IDs

Table 2: List of Homogenous Materials & IDs for ACM Sampling

Table 3: List of Homogenous IDs for LBP Sampling

LIST OF APPENDICES

Appendix A: Sampling Plans
Appendix B: Photographic Log

Appendix C: Homogenous Sample Logs and Materials List

Appendix D: Laboratory Reports
Appendix E: Chains of Custody
Appendix F: Inspector Credentials

SECTION 1: INTRODUCTION

BECC performed a Hazardous Material Assessment including an asbestos-containing material (ACM) survey based on the Asbestos Hazard Emergency Response Act (AHERA) and National Emissions Standards for Hazardous Air Pollutants (NESHAP) of the 3,400 square foot (sf) single-story former Dollar Rent-A-Car facility at the Birmingham-Shuttlesworth International Airport in Birmingham, Jefferson County, Alabama (herein referred to as the "Property"). This survey also included a limited scope Hazardous Material Assessment (HMA) for the presence of lead-based paint (LBP) and to identify hazardous substance storage and use. The Property as defined is limited to the interior and immediate exterior of the building. This assessment was conducted in accordance with BECC proposal number Q1-25062 dated April 25, 2025. Sampling for asbestos performed as part of this work was conducted under AHERA and NESHAP guidelines, where feasible, as well as applicable state and federal regulatory agencies. Some limitations may apply depending on the conditions of the facilities subject to inspection and are discussed in **Section 1.4**. Depending on the extent of sampling possible, additional testing may be required.

1.1 Purpose

The primary purpose of this assessment is to identify hazardous materials including asbestos-containing material (ACM) within the building and the exterior of the building per NESHAP, lead-based paints, building equipment potentially containing hazardous substances, and hazardous substance storage and use. This survey and assessment is required for renovation and demolition activities. Demolition is defined as the removal of any structural member of a facility. The aforementioned structure is planned for full demolition.

1.2 Reliance

The content of this report is provided for the sole use of AKRF, Their Affiliates and Subsidiaries, Their Successors, Assigns and Grantees. Use of this report is subject to the Terms and Conditions including the Limitation of Liability as stated in BECC proposal number Q1-25062 dated April 25, 2025. Use by any third parties will be at such party's sole risk except when granted under written permission by BECC. Any such authorized use or reliance by third parties will be subject to the same Agreement, under which the work was conducted for the AKRF.

1.3 Detailed Scope of Services

The scope of services provided by BECC consisted of 5 major elements and performed in general conformance with Part 763 AHERA/ASHARA and USEPA 40 CFR Part 61 NESHAP for the asbestos survey.

- Walk Through Inspection BECC conducted a thorough interior walk-through of the facility(ies) to identify
 suspect ACBM and LBP painted surfaces that may require testing and defined by each Functional Space and
 Homogenous Material. An exterior assessment for suspect ACM was also performed. BECC will identifye
 storage and use of suspected or known hazardous materials associated with the facility(ies).
- Categorize each suspect material and paint and associate with each homogenous area, including material and paint condition.
- Collect Samples for Laboratory Analysis BECC collected samples from each suspect homogenous material and paint in each Functional Space.

- Radon Gas The Property was assessed compared to published data by local regulatory agencies and the EPA guidelines.
- Hazardous materials storage and use The facility(ies) was/were observed and cataloged for suspected of
 known hazardous substances that may have an impact on renovation and/or demolition activities, including
 PCBs.
- Photographs BECC obtained photographs of the facility depicting conditions and identifying characteristics
 of samples taken and storage conditions of known suspected hazardous materials and included in the
 Appendix.
- Evaluation and Report BECC contracted a NIST registered laboratory to perform bulk Polarized Light
 Microscopy (PLM), pursuant to EPA 600/M4-82-020 to determine the presence of asbestos fibers. A report
 was generated to discuss the impact, if any, of these materials under NESHAP and AHERA guidelines related
 to the proposed work at the facility.

1.4 Assumptions and Limitations

The use of AHERA guidelines apply to K-12 schools and public government buildings (ASHARA) and may involve the presumption of materials as ACM (PACM) as set forth by OSHA. Where materials may be inaccessible due to access, unsafe or unstable conditions, Asbestos Hazard Emergency Response Act (AHERA-1986) guidelines allow for the presumption of ACM in suspect materials. NESHAP applies to all facilities except single residential buildings with 4 units or less. It requires a thorough inspection. It should be noted that AHERA/ASHARA regulations apply to occupied K-12 schools. Therefore, NESHAP is the governing regulation for this facility based on the planned demolition activities.

Parts of the conclusions reached in the ACM survey may be based on the presumption materials encountered were ACM. As mentioned, AHERA/ASHARA allows for the use of Presumed Asbestos Containing Materials (PACM) based OSHA regulations in lieu of testing where sampling may be difficult or undesirable (i.e. unsafe entry). This practice may also be used where the guidelines of NESHAP cannot be fully satisfied. For projects that must strictly follow NESHAP guidelines, further testing may be necessary and may be conducted at the time of demolition/renovation under the strict supervision of a certified trained asbestos inspector.

Future conditions of materials could change subject to unforeseeable site activity from the time of this assessment and demolition. Parts of this assessment may not be exhaustive in scope nor does it guarantee a risk-free site. This assessment represents the professional judgment and conclusions of the certified and trained asbestos inspector performing the survey. No conclusions are intended nor implied beyond those stated.

This assessment was performed for reliance as described in **Section 1.2** and for the specific application to the subject project. BECC notes that this survey was limited to the collection of suspect asbestos containing building materials and painted surfaces from readily accessible locations of the building(s) made accessible by the Owner or Owner's representative. Laboratory analysis utilized PLM for asbestos samples. Point Counting was <u>not</u> utilized for this project.

Due to some accessibility of the building such as hidden spaces behind some walls, all potentially suspect materials may not have been individually assessed. This report is presented to provide a guidance document for required response actions in accordance with state and federal regulations, and to provide a basis of biddable quantities for demolition and renovation related work by a qualified contractor. This report is not intended to provide specific means and methods by which a contractor may implement to remove and dispose of the inventoried materials.

1.5 Terms & Conditions of Assessment

The results, findings, observations and recommendations expressed in this report are based only on conditions that were observed during BECC's inspection of the site on June 18, 2025. Although care has been taken by BECC in compiling and checking the information contained in this report to verify that it is current and accurate, BECC disclaims any and all liability for any errors, omissions or inaccuracies in such information and data and for any consequences arising from such omissions or inaccuracies. The recommendations provided in this report do not constitute legal and/or medical advice. It is further understood that BECC makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for a particular purpose of merchantability nor are such representations or warranties to be implied with respect to the data furnished, and BECC assumes no responsibility with respect to customers, its employees, client's or customers' use thereof. BECC, their representative and this report make no representation and/or assumptions as to past conditions or future occurrences at this site. The information provided herein applies only to the subject property as it existed during BECC's site visit. Should this site's use and/or conditions change, information, observations and recommendations found herein would no longer apply. This report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings of this assessment. BECC shall not be liable for any special, consequential and/or exemplary damages resulting, in whole or in part, from the customer's use of the data provided.

1.5.1 ACM Survey Terms & Conditions

It should be noted that this survey is only intended for the purpose of identifying suspect building materials that may contain asbestos fibers using a limited sampling program. This survey, due to its scope and nature is typically not sufficient to estimate costs of abatement or to obtain construction permits for inaccessible structures or spaces not included within the scope of work. This is because not all areas are generally accessible and areas that are hidden, inaccessible or covered by other construction may not be exposed until the work begins. Further, the survey includes sampling of homogeneous materials and not specific sampling at each individual location that work may occur during renovation/demolition activities.

1.5.2 LBP Survey Terms & Conditions

It should be noted that this survey is only intended for the purpose of identifying suspect <u>painted</u> surfaces that may contain elevated lead concentrations using a limited sampling program. This survey, due to its scope and nature is typically not sufficient to estimate costs of abatement or to obtain construction permits for inaccessible structures or spaces not included within the scope of work.

SECTION 2: PROJECT DESCRIPTION

On June 18, 2025, BECC conducted a visual survey of hazardous materials including suspect ACM, LBP in the approximate 3,400-sf former Dollar Rent-A-Car located at 5600 Airline Drive at the Birmingham-Shuttlesworth International Airport in Birmingham, Alabama. This assessment included all reasonably accessible spaces throughout the building interior and exterior. It should be expected that some suspect materials may be encountered during demolition that were not sampled during this assessment, such as in limited access spaces. All work should cease and the material must be evaluated by a certified and trained asbestos inspector before demolition shall proceed.

2.1 Property Description

The building is a metal-sided slab-on-grade structure with concrete foundations and metal roof. Structural members are steel, and the building is insulated on the inside of the metal siding and roof. The interior of the building features a light repair bay primarily for oil changes with a floor mounted hydraulic lift, a wash bay with a floor mounted wash rack, and office space with two (2) offices, and storage areas. The wash and service bays were generally open. The office space was enclosed with sheetrock walls and drop-in acoustic paneled ceiling system. In general, materials noted in the structures under the limitations of access and visibility were as follows:

• Spaces behind metal paneling: In general these spaces appeared to be insulated as observed in the open bays.

SECTION 3: ASBESTOS-CONTAINING MATERIAL (ACM)

3.1 Definitions

Demolition is defined as the removal of any structural member of a building. Renovations are limited to the removal and addition of non-structural members or materials.

ACM is defined as any material which contains more than one percent (1%) asbestos by area, as determined by the method specified in Appendix A of Subpart F, 40 CFR Part 763. ACM is generally found in some common building materials such as: drop-in ceiling tile, hard plaster, floor tile, sheet vinyl flooring, joint compound, insulation, heating system insulation, window and door caulking, window glazing, hardboard siding, and a variety of roofing materials.

In order to be considered a Regulated Asbestos Containing Material (RACM), the material shall be either friable (any material which, when dry, can be crumbled, pulverized, or reduced to powder by either hand pressure or mechanical forces reasonably expected to act on the material) or have a reasonable probability of becoming friable in the course of ordinary or anticipated use of the building containing the material or during the course of demolition or renovation operations. RACM can also be non-friable ACM that has become friable or will be or has been subjected to sanding, grinding, cutting or abrading. Activities which involve friable asbestos, such as demolition or renovation, are regulated by the US EPA, the Alabama Department of Environmental Management (ADEM) and the US Occupational Safety and Health Administration (OSHA). Non-friable ACM may not be regulated because it does not pose a potential respiratory hazard. Non-friable ACM which will become friable during a renovation or a demolition is regulated.

3.2 ACM Classifications

RACM

Regulated ACM means (a) Friable asbestos material, (b) Category I nonfriable ACM that has become friable, (c) Category I nonfriable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading, or (d) Category II nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of demolition or renovation operations regulated by 40 CFR Part 61, Subpart M. Plaster, joint compound, and Transite© are examples of Category II friable ACM. Friable ACM is designated regulated (RACM) if totaling over 160 square feet, 260 linear feet, or a total of more than 35 cubic feet, and must be removed by a certified contractor prior to renovation or demolition.

Category I

Category I ACM includes non-friable materials that can be maintained in non-friable condition during the renovation or demolition by not performing certain activities. Roofing, for example, can become friable by being subjected to such activities as cutting, grinding, and abrading; and resilient floor covering can become friable by being subjected to sanding, beadblasting, or pulverization into small pieces and/or powder. Unless these materials are acted upon by one of these methods, it is considered non-friable and is not subject to the NESHAP regulation. Category I ACM need not be removed prior to demolition unless it is in very poor condition.

Category II

Category II ACM includes all other non-friable material not included in Category I that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure.

3.3 Notifications

Notification of demolition or renovation within a structure must be sent to the Alabama Department of Environmental Management (ADEM) ten (10) working days prior to the activity. With demolition or renovation projects involving the removal of greater than or equal to 160 linear feet, 260 square feet, or a total of 35 cubic feet of ACM, ADEM must be notified. Full demolition of a structure with less than 160 linear feet, 260 square feet, or a total of 35 cubic feet of ACM (including structures with no asbestos) must notify ADEM ten (10) working days prior to demolition.

3.4 Inspections

3.4.1 Procedure

Suspect ACM was assessed in general accordance to NESHAP guidelines and sampled in general accordance to AHERA guidelines by Homogeneous Material. Although Functional Spaces (an area which is commonly used with similar activities) were considered (**Table 1**), homogeneous material was considered across a broader scope per NESHAP due to plans to demolish the building. A Homogeneous Material is typically uniform in texture, appearance, installed at the same time, and may contain more than one type or formulation of material depending on the application. A total of ten (10) samples were collected from the structure that was suspected ACM to determine the actual composition of the material by laboratory analysis. These samples were collected from various materials as categorized in **Table 2**.

Table 1: List of Functional Spaces & IDs

<u>Functional Spaces</u>
OFFICES
SERVICE BAY
WASH BAY
EXTERIOR

Table 2: List of Homogenous Materials & IDs for ACM Samples

Table 2: List of Homogenous Materials & 123 for Metri Samples			
Homogenous Suspected Materials			
	FLOORING		
12" x 12" vinyl floor tile (VFT) in offices			
12 X 12 VIII YI 11001 tile (VI I / III OIII lees			
12" x 12" VFT in service area restroom			
12 X 12 VIT III SCIVICE di Ca l'estitotili			
	MISCELLANEOUS		
	MISCELLANEOUS		
Wall Joint Compound			
Wali John Compound			

Wall Joint Compound Acoustical Ceiling Tiles

Walls, ceilings, and floors were inspected to assess the presence of "hidden" areas and materials that could have been concealed by past renovations. Hidden or limited access spaces were considered behind walls or existing structures, or unsafe for entry/access. All bulk samples were recorded on a chain of custody (see **Appendix E**). Photographs were taken where possible at the time of sampling and included in **Appendix B**.

3.4.2 Laboratory

Samples were labeled according to homogenous material, provided a unique ID (see ACM Sample Log in **Appendix C**), and analyzed for asbestos content by Polarized Light Microscopy (PLM). The results are provided in percent (%) asbestos on laboratory reports. If the results are between trace and 10%, then the inspector can order that a more exacting quantitative method be completed for that sample. This method is called a Point-Count analysis. The Point-Count analysis is ordered particularly when the asbestos percentage is low, and it involves a Category II substance. The difference between no abatement action required (less than 1%) and costly abatement usually hinges on the Point-Count results.

The analytical laboratory used, Eurofins CEI, Inc., in Cary, North Carolina, is accredited by the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program. The laboratory analytical reports and the inspection chain of custody forms can be found in **Appendix E.**

3.5 Findings & Conclusions

Based on the results of the ACM survey, no samples were found to contain asbestos fibers. Therefore, ALL materials sampled were categorized as non-ACM.

SECTION 4: LEAD-BASED PAINT (LBP)

4.1 Definitions

Two different factors were used to evaluate for lead-based paint: OSHA and the EPA. OSHA and the EPA do not have quantitative definitions for lead based paint. As an alternative, the US Department of Housing and Urban Development (HUD) was considered. The HUD threshold stipulates that lead based paint is defined as surface coatings with lead equal to or greater than 1.0 mg/cm² or 0.5 percent by weight. The Alabama Department of Environmental Management (ADEM) has established as 5 parts per million (ppm) threshold (based on TCLP) to determine if paint containing lead should be classified as hazardous waste.

4.2 Inspection

4.2.1 Procedure

A visual inspection was performed of painted surfaces throughout the interior and exterior of the structures. Before collecting samples, distinct testing combinations were identified. A testing combination is made up of a room equivalent, a building component, and a substrate using in functional spaces listed in **Table 1**. Paint color is not included as part of a testing combination but may define Homogenous Material. Samples were collected of each testing combination identified using **Table 1** and **Table 4**. For the LBP survey, painted surfaces were assessed and grouped based on similar application of paint in each space.

Painted surfaces were primarily limited to the office spaces. This area appears painted with similar paint covering. Sampling was performed in such a way to collect samples to the substrate in order to obtain all layers of paint.

Table 4: List of Homogenous Paint & IDs for LBP Sampling

Homogenous Suspected Materials	<u>Substrate</u>
Tan Paint over Blue Paint	Sheetrock

A total of two (2) samples were collected from the office spaces in the building to determine some lead content by laboratory analysis. These samples were collected from painted surfaces where sufficient paint chip samples could be removed.

4.2.2 Laboratory

Paint chip samples were labeled according to homogenous material, provided a unique ID (see LBP Sample Log in **Appendix C**), and analyzed for Total Lead content by Atomic Absorption, Direct Aspiration (EPA Method 7420). TCLP by Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry (EPA Method 1311, EPA Method 6020B) was not performed for this assessment.

The analytical laboratory used, Eurofins CEI, Inc. (Total Lead) in Cary, North Carolina, is accredited by the National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program. The laboratory analytical reports in **Appendix D** and the inspection chain of custody forms in **Appendix E**.

4.3 Findings & Conclusions

Based on the results of this LBP survey, no paint samples were found to have elevated levels of lead as defined in **Section 4.1.** All paint sampled and not listed in **Table 5** were categorized as non-LBP.

SECTION 5: OTHER POTENTIALLY HAZARDOUS SUBTANCES

Building components that may contain hazardous materials such as mercury, lead (except lead plumbing), pesticides, radioactive elements, chlorofluorocarbons (CFCs), and polychlorinated biphenyl (PCB) were inventoried as part of this survey. These items are often contained in electronics, lighting, and other devices or appliances commonly present in buildings.

Items also inventoried included materials that would be considered universal waste. Universal wastes are widely generated hazardous wastes for which the United States Environmental Protection Agency (EPA) has reduced regulatory requirements to encourage proper collection and recycling of these materials. The Universal Waste Rule is a modification of the Hazardous Waste Rules, enacted under the Resource Conservation and Recovery Act (RCRA), and are governed by Title 40 of the Code of Federal Regulations (CFR) in part 273. Items characterized as universal waste fall under four (4) general categories; batteries, pesticides, mercury-containing equipment, and lamps. Further description of each category including common examples of items considered universal wastes are as follows:

- Batteries: This includes discarded primary (non-rechargeable) and secondary (rechargeable) batteries that contain elements such as cadmium, lead, or mercury. Examples include nickel-cadmium, sealed lead-acid, mercury-oxide batteries.
- Pesticides: This includes agricultural pesticides that have been recalled or banned from use, obsolete, damaged, or are no longer needed due to changes in agricultural practices or other factors.
- **Mercury-Containing Equipment:** This category includes devices which contain elemental mercury that is integral to their function. Some examples include mercury-containing thermostats, thermometers, barometers, mercury switches, certain types of meters, regulators, and gauges.
- Lamps: The lamps category is slightly broader in that it includes lamps that are hazardous for any characteristic, not just for mercury. Fluorescent bulbs are the most common, but also can include high-intensity discharge (HID), neon, mercury vapor, high-pressure sodium, and metal halide lamps. This category does not include associated light fixture components such as ballasts. Hazardous waste lamps become subject to this rule if they are hazardous waste under 40 CFR 261, and when they are permanently removed from a fixture or determined to be discarded.

5.1 Polychlorinated Biphenyls (PCBs)

The property was generally observed for potential sources of PCBs. Suspect PCB-containing material would include equipment such as fluorescent or metal halide light ballasts, electrical motors and pumps, hydraulic equipment (elevator), electrical transformers, etc. Suspect PCB-containing material would include equipment such as fluorescent or metal halide light ballasts, electrical motors and pumps, hydraulic equipment (elevator), electrical transformers, etc.

The structure's actual construction date was unknown but was likely constructed after the USEPA's 1979 PCB regulations. The building was observed for possible PCB-containing equipment. The equipment observed was noted as fluorescent lighting fixtures throughout the building, a self-contained hydraulic tank on the service bay lift, and a pad mounted transformer on the north side of the building. Approximately 9 lighting fixtures were observed along the side wall of the service bay, as well as 1 fixture in the restroom between the service bay and wash bay. The service bay also has 8 similar fixtures along the wall. The office space contained approximately 17 fluorescent fixtures throughout the space. Fourteen (14) lighting fixtures were observed along the exterior of the building (metal halide/fluorescent) that may also contain PCB ballasts.

5.2 Chlorofluorocarbons (CFCs)

Suspect CFC-containing material would include equipment such as refrigeration machinery, air conditioning units, walk-in coolers, and freezers. The structures were observed for possible CFC containing equipment.

Such equipment was observed as an air conditioning unit located on the ground near the transformer.

5.3 Mercury

The structure was observed for possible mercury containing equipment. Most likely mercury sources would typically be from fluorescent light tube bulbs noted in **Section 5.1**. Approximately ninety-five (95) potential mercury containing bulbs were observed throughout the fixtures noted in **Section 5.1**, ranging up to 6 feet in length. Two (2) mercury containing thermostats were observed in the service bay and the storage area between the service and wash bays. Given the nature of the equipment, confirmation of mercury content is not feasible.

5.4 Radon

BECC reviewed EPA's "ALABAMA – EPA Map of Radon Zones". Based upon this review, radon concentrations in Jefferson County, Alabama, which is listed in EPA Zone 2, have predicted levels between 2 pCi/L and 4.0 pCi/L (action level established by the USEPA).

Radon testing in Jefferson County indicates radon levels are typically less than the EPA's Guidance Action Level of 4.0 pCi/L. Seventy-eight (78) homes tested exhibited an average measurement of 1.5 pCi/L of radon gas. Measurements as high as 10.3 pCi/L have occurred but are likely highly dependent on the specific location of the measurement. Eight (8) of the 78 homes tested measured greater than 4.0 pCi/L. The existing facility does not have below-grade spaces. Based on the radon measurements and property conditions, radon gases are not expected to significantly impact the Property.

5.5 Miscellaneous Hazardous Substances

The structure was generally observed for chemical storage and use, or other materials that may be considered hazardous. No such chemicals or storage were observed. During previous operations, oil tanks were stored on the west side of the building in a fenced area. These tanks have been removed. Based on information provided by the Owner, the concrete pad located at the southwest corner of the building was a former Underground Storage Tank (UST) that was removed and closed with ADEM. The surface was replaced with a concrete pad.

SECTION 6: FINDINGS

Suspect materials identified and sampled during the ACM assessment encountered no asbestos fibers. Therefore, ALL materials assessed were classified as non-ACM. No painted surfaces sampled during the assessment contained elevated lead concentrations.

The parking lot area of the Property was observed to have storage of various equipment, materials, and chemicals for Airport Operations. These items will be removed by the Airport Authority prior to demolition.

The radon levels for the building are expected to be between 2 pCi/L and 4.0 pCi/L based on reported levels in Jefferson County by the ADPH, below the action limit set forth by the USEPA.

In summary, no items identified during this assessment were found to have a significant impact at the **Property. Appendix B** contains a photograph log of some of the items inventoried and/or sampled. Photographs were taken by the assessor during the site visit.

SECTION 7: CONCLUSIONS & RECOMMENDATIONS

It is our understanding the building is planned for demolition. No hazardous materials were identified during this assessment; therefore, no abatement is recommended at this time. Of the machinery identified as part of the demolition scope, none were confirmed to contain hazardous materials/chemicals, but may require special handling. These items were noted as:

POTENTIAL PCBs

- 1. Pad-Mounted Transformer (potential PCBs) (1 ea.)
- 2. Fluorescent Light Fixtures (35 ea.)
- 3. Other Light Fixtures (metal halide, etc.) (14 ea.)
- 4. Exit Signs (3 ea.)

POTENTIAL MERCURY

- 9. Fluorescent Light Tubes (92 ea.)
- 10. Other Light Fixture Bulbs (14 ea.)
- 11. Exit Signs (3 ea.)
- 12. Thermostats (2 ea.)

All items that will be removed should be disposed of or recycled in accordance with applicable state and federal regulations.

SECTION 8: PROFESSIONAL SIGNATURES

CERTIFICATION: The Environmental Professional certifies and agrees that:

- 1. The Environmental Professional has no present or contemplated future interest in the property being inspected; and neither the employment to make the inspection, nor the compensation for it, is contingent upon the outcome of the inspection.
- 2. The Environmental Professional has no personal interest in or bias with respect to the subject matter of the inspection or the participants in connection with it. The findings of the Report are not based in whole or in part upon the race, color, or national origin of the past, current or prospective owners or occupants of the property inspected, or upon the race, color or national origin of the past, current and/or future owners or occupants of the properties in the vicinity of the property inspected.
- 3. The Environmental Professional has personally inspected the property. To the best of the Inspector's knowledge and belief, all statements and information in this report are true and correct, and the Environmental Professional has not knowingly withheld any significant information.
- 4. All contingent and limiting conditions are contained herein (imposed by the terms of the assignment or by the undersigned affecting the analyses, opinions, and conclusions contained in the report).
- 5. This report has been made in general conformity with United States Environmental Protection Agency's (EPA) National Emission Standard for Hazardous Air Pollutants (NESHAP) regulations, Alabama Department of Environmental Management's (ADEM) regulations, and local regulations where applicable.
- 6. All conclusions and opinions concerning the property being assessed that are set forth in the Inspection Report were prepared by the Environmental Professional whose signature appears on the report. No change of any item in the Inspection Report shall be made by anyone other than the Environmental Professional, and the Environmental Professional shall have no responsibility for any unauthorized change.

The Asbestos Building Inspection and Lead-Based Paint Survey described herein was conducted by Mr. Jeremy Mitchell, certified Asbestos Inspector and Asbestos Abatement Project Designer, of BECC. BECC's work consisted solely of the activities described in the original report and is subject to the Limitations, Terms & Conditions constraints provided therein.

Jeremy Mitchell, P.E. (AL 29168)

Alabama SafeState Certified Asbestos Inspector (AIN0322556012)

Expiration Date 3/4/2026

SECTION 9: HAZARD ASSESSMENT FACTORS

9.1 Asbestos-Containing Materials (ACM)

Friability is a hazard assessment classification used each time suspect ACM was sampled. The term friable means that the material can be crumbled, pulverized, or reduced to powder by hand pressure when dry. Materials classified as non-friable may be reclassified as friable if the material is damaged. Friable ACM has been determined by the EPA and OSHA (termed intact and non-intact) to be more "Hazardous" than non-friable ACM, because friable ACM can be made airborne more readily than non-friable ACM. In assessing the fiber release potential, only current conditions of all ACM identified were noted.

Only materials made accessible within each building or structure was evaluated. Materials that were hidden and/or not accessible were not evaluated as part of this survey. If materials suspected of containing asbestos are found that were not accessible during this survey, they should be analyzed for asbestos content. Materials visibly identified as non-asbestos (fiberglass, foam rubber, wood, etc.) were not sampled.

9.2 Lead-Based Paint (LBP)

Two different factors were used to evaluate for lead-based paint: OSHA and the EPA. OSHA and the EPA do not have quantitative definitions for lead-based paint. As an alternative, the US Department of Housing and Urban Development (HUD) was considered. The HUD threshold stipulates that lead based paint is defined as surface coatings with lead equal to or greater than 1.0 mg/cm² or 0.5 percent by weight. HUD also publishes a document about lead evaluation and control, titled "Guidelines for the Evaluation and Control of lead-Based Paint Hazards in Housing" found at https://www.hud.gov/program_offices/healthy_homes/lbp/hudguidelines. Chapter 13 of this documents describes proper encapsulation methods for abatement by encapsulation.

Should lead-containing materials be identified, the Environmental Protection Agency (EPA) rules require that lead-based paint material be classified as hazardous if the Toxicity Characteristic Leaching Procedure (TCLP) reads more than 5 parts per million in lead. Building material debris generally passes the TCLP and therefore is usually not considered hazardous.

The OSHA Lead in Construction Standard (OSHA - 1926.62) stipulates that a lead-based paint survey be performed on any suspect materials prior to renovation/demolition. All of OSHA rules pertaining to lead-based paint deal with worker exposure levels or the concentration of lead in the air. An Action Level of 30 $\mu g/m^3$ (micrograms of airborne lead dust per cubic meter of air in an 8-hour period) will trigger periodic exposure monitoring, biological monitoring and training during the course of the renovation/demolition work. If an Exposure Limit of 50 $\mu g/m^3$ is reached then work practice controls, respiratory protection, protective clothing, hygiene facilities and signs may be required.

9.3 Other Potentially Hazardous Substances

The interior of the building was assessed for potential environmental hazards or pollutants as part of the inspection. Such pollutants or hazards may be contained in standard building supplies or materials, operation processes or storage areas, as well as part of machinery or equipment located on the premises. Hazards can also be found in, but are not limited to, such common building components as thermostats, fluorescent light fixtures, water heaters, heat pumps or AC units, large machinery containing oils or lubricants (i.e. metal presses), etc.

Many potentially hazardous substances common in building equipment and materials are not always dangerous while the material or equipment it is associated with is properly maintained. However, during demolition or renovation these substances can or may be harmful to workers or occupants of the building(s). Many substance encountered during these type of assessments have proper disposal procedures such as fluorescent light bulbs and oil or petroleum products. Each product should be disposed of appropriately and by an authorized and experienced professional of the associated trade.

9.3.1 Polychlorinated Biphenyls (PCB's)

According to the Environmental Protection Agency, "ballasts manufactured through 1979 may contain PCBs. Ballasts manufactured between 1979 and 1998 that do not contain PCBs should be labeled "**No PCBs**." If a ballast is not labeled "**No PCBs**," it is best to assume it contains PCB's." For additional info go to http://www.epa.gov/osw/hazard/tsd/pcbs/pubs/ballasts.htm.

9.3.2 Chlorofluorocarbons (CFCs)

CFCs are colorless, volatile, toxic liquids and gases with a faintly sweet ethereal odor. Overexposure at concentrations of 11% or more may cause dizziness, loss of concentration, central nervous system depression and/or cardiac arrhythmia. Vapors displace air and can cause asphyxiation in confined spaces. Although non-flammable, their combustion products include hydrofluoric acid, and related species.

9.3.3 Mercury

Suspect mercury vapor-containing material/equipment would include equipment such as fluorescent lights, mercury vapor, high-intensity discharge and other lamps, as well as liquid mercury-containing material/equipment such as switches, thermostats, and other temperature control and HVAC devices. These devices may contain mercury levels which may be harmful to ingestion or inhalation during renovation/demolition.

9.3.4 Radon

Radon is a naturally occurring colorless, odorless gas that is a by-product of the decay of radioactive materials potentially present in bedrock and soil. Radon gas may enter the lowest level of a building through floor cracks, structural joints, or plumbing conduits. The concentration of radon gas in a building depends on subsurface soil conditions, the integrity of the building's foundation, and the building's ventilation system. The potential adverse health effects associated with radon gas depend on various factors, such as the concentration of the gas and duration of exposure. The EPA guidance action level for residential exposure to radon is 4.0 picocuries per liter (pCi/L) of air. The guidance action level is not a regulatory requirement for private owners of real property but is commonly used for comparison purposes to suggest whether further action at a building may be prudent.

9.3.5 Miscellaneous Hazardous Substances

Chemical storage areas can provide toxic exposure to maintenance staff or any personnel that may come in contact with the substances. Due to varying substances and exposure pathways at each location, harmful exposures are difficult to assess in general conditions. However, storage of potentially harmful substances should be stored in accordance with standard industrial good practices, and cleanly maintained in a secure location. All chemicals stored at a location should have a Safety Data Sheet (SDS) on file with the appropriate staff and available for review of all employees.

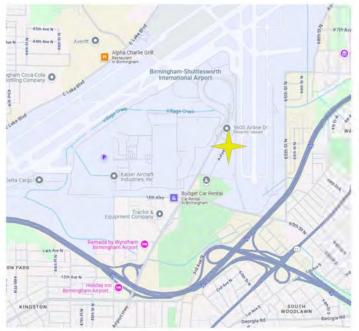
SECTION 10: CLOSING

We appreciate the opportunity to work with you on this project. If you have any questions or we may be of further services to you, please call us.

Jeremy Mitchell, P.E.

Environmental Services Director

Martin T. Burford


President

APPENDIX A

(Sampling Plans)

GENERAL NOTES

- 1> Roof was metal decking with no covering.
- 2> Exterior of building was metal and CMU.
- 3> Windows were pre-fabricated metal inset frames.
- 4> Transformer located on north of the building on concrete pad.
- 5> AC unit located next to the transformer.
- 6> A concrete pad (seen in above photo) was over a former UST that was removed.
- 7> Office space was generaly VFT with carpet on concrete in the 2 offices, and sheetrock walls with drop-down acoustical ceiling system.
- 8> No ACM was identified from samples retrieved.
- 9> No LBP was identified from samples retrieved.

FORMER DOLLAR RENT-A-CAR at BHM

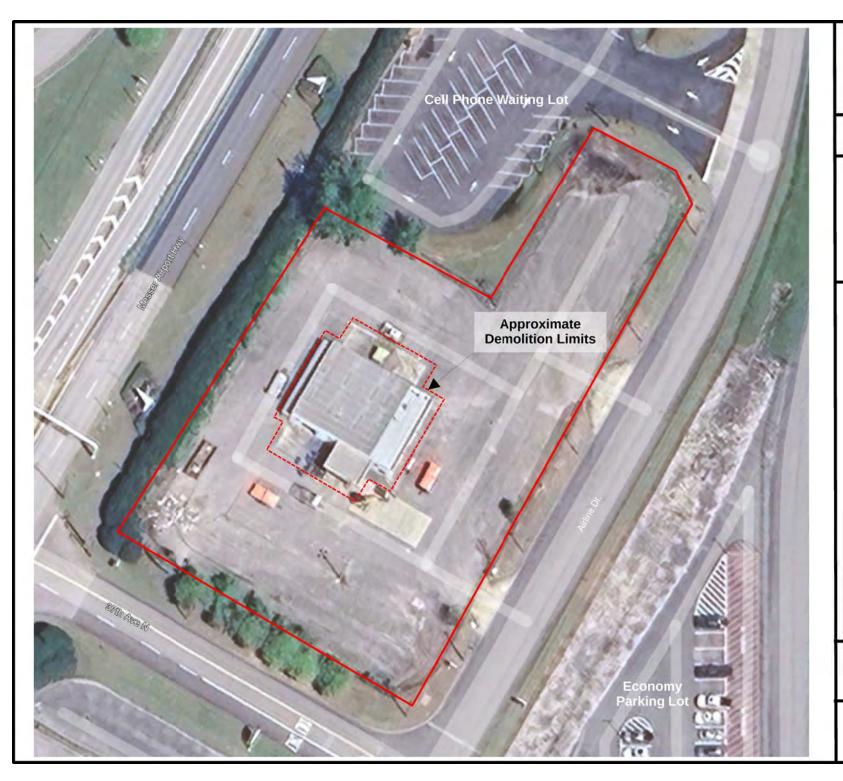
BECC PROJECT NO.: 325049

LOCATION

LOCATION: 5600 Airline Dr. Birmingham, AL

COORDINATES: 33.557414 N, -86.749895 W

HAZARDOUS MATERIAL ASSESSMENT


SHEET: 1 of 5

SCALE:

DATE: 6/18/2025

DRAWN BY: Jeremy Mitchell

FORMER DOLLAR RENT-A-CAR at BHM

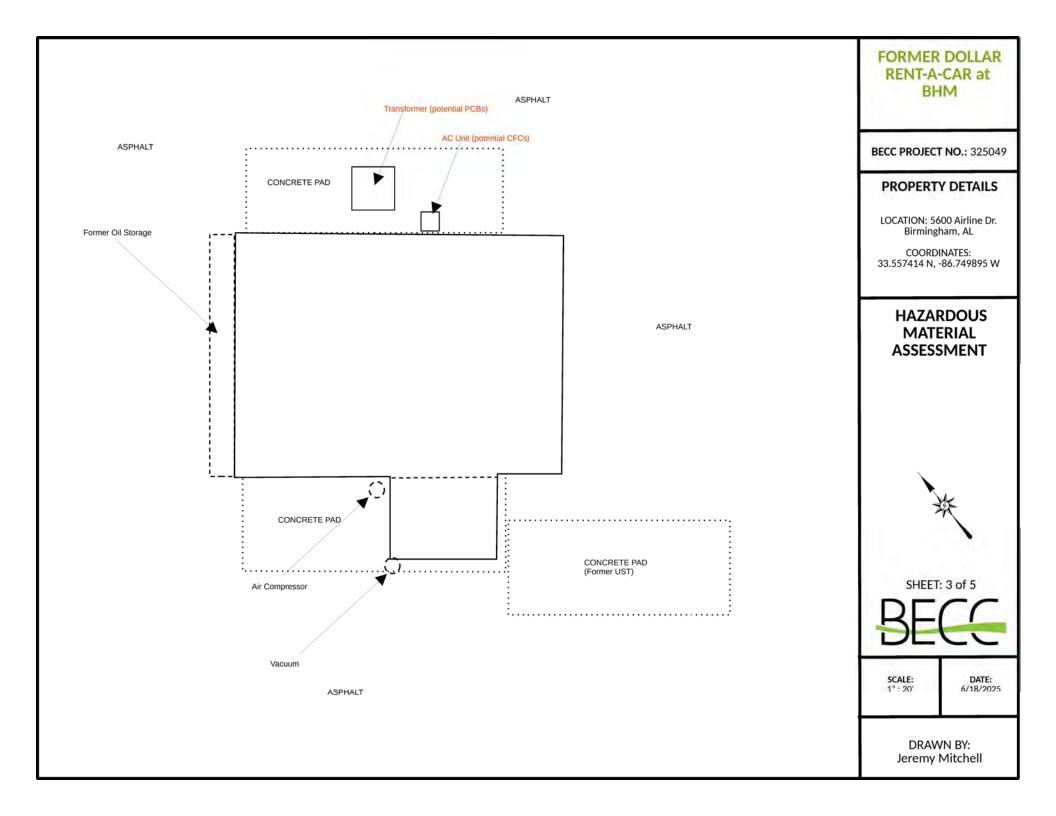
BECC PROJECT NO.: 325049

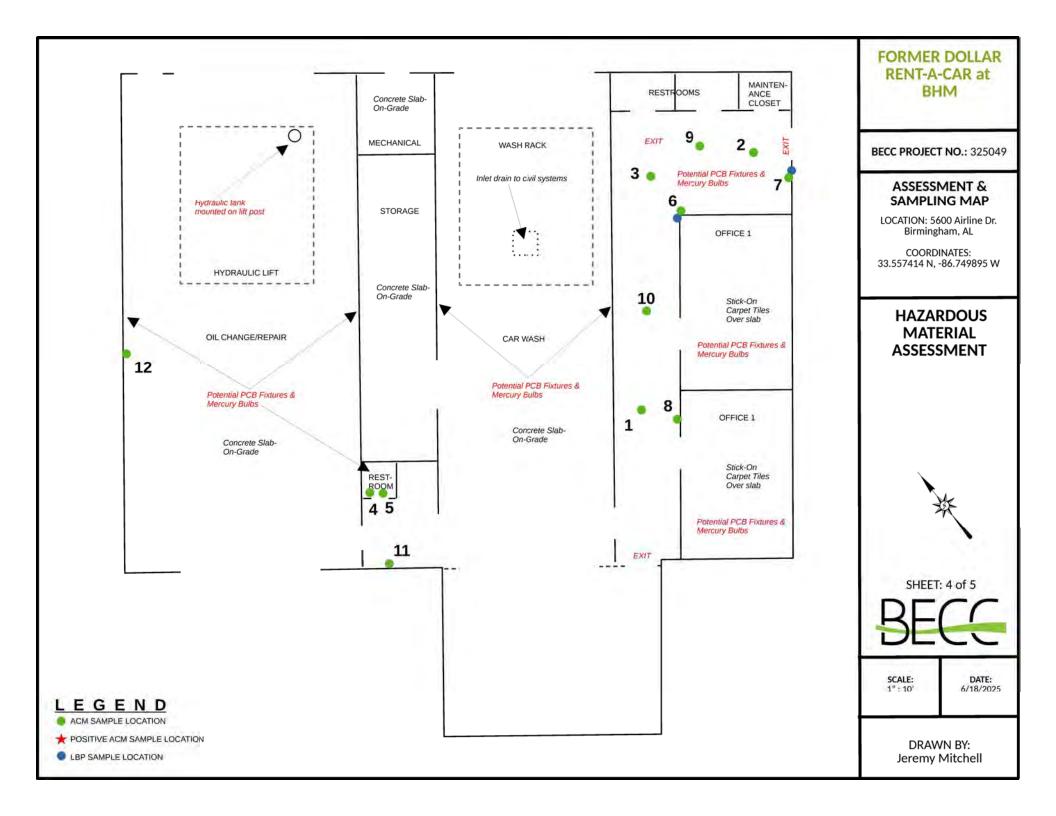
PROPERTY BOUNDARIES

LOCATION: 5600 Airline Dr. Birmingham, AL

COORDINATES: 33.557414 N, -86.749895 W

HAZARDOUS MATERIAL ASSESSMENT




SHEET: 2 of 5

SCALE: 1":55' DATE: 6/18/2025

DRAWN BY: Jeremy Mitchell

ALABAMA - EPA Map of Radon Zones

http://www.epa.gov/radon/zonemap.html

The purpose of this map is to assist National, State and local organizations to target their resources and to implement radon-resistant building codes.

This map is not intended to determine if a home in a given zone should be tested for radon. Homes with elevated levels of radon have been found in all three zones.

All homes should be tested, regardless of zone designation.

PROJECT LOCATION_

Jefferson County

IMPORTANT: Consult the publication entitled "Preliminary Geologic Radon Potential Assessment of Alabama" (USGS Open-file Report 93-292-D) before using this map. http://energy.cr.usgs.gov/radon/grpinfo.html This document contains information on radon potential variations within counties. EPA also recommends that this map be supplemented with any available local data in order to further understand and predict the radon potential of a specific area.

Zone 3

FORMER DOLLAR RENT-A-CAR at BHM

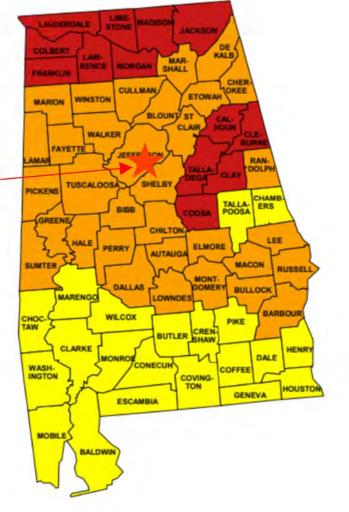
BECC PROJECT NO.: 325049

RADON MAP

LOCATION: 5600 Airline Dr. Birmingham, AL

COORDINATES: 33.557414 N, -86.749895 W

HAZARDOUS MATERIAL ASSESSMENT


SHEET: 5 of 5

SCALE:

DATE: 6/18/2025

DRAWN BY: Jeremy Mitchell

APPENDIX B

(Photographic Log)

BEC Former Dollar Rent-A-Car at BHM Hazardous Material Assessment

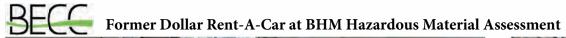
1> Transformer on north side of building

3> AC unit on north side of building next to transformer

2> Service bay with lift in view

4> Former oil storage adjacent to service bay, west side

5> Hydraulic tank on lift in service bay


7> Hydraulic lift in service bay

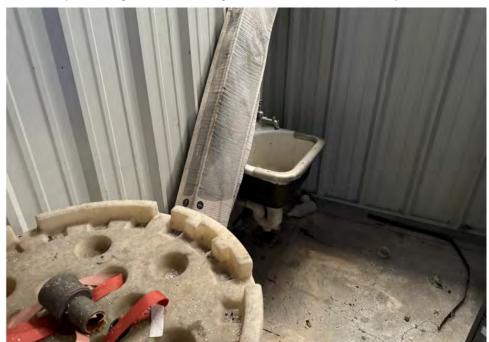
6> Wash ba with wash rack remaining

8> Mercury-containing thermostat in service bay

9> Service area restroom

11> Storage area next to service restroom

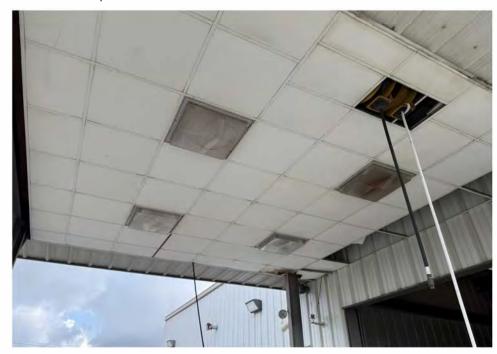
10> Storage between wash and service bays

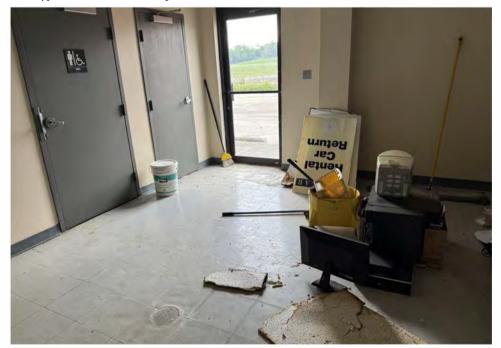


12> Inlet drain in wash rack area

13> Mercury-containing thermostat in storage area between wash and service bays

15> Wash sink in storage area between wash and service bays


14> Lighting fixtures in service bay

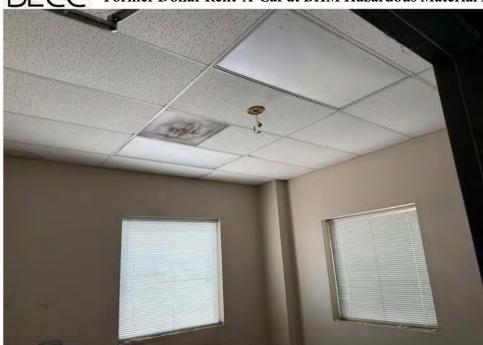

17> Office hallway

19> Ceiling area of wash bay lean-to

18> Typical restroom in office space

20> Office hallway

21> Ceiling tiles in office hallway


23> Ceiling in office hallway

22> Ceiling tiles in office 1

24> Office 1

25> Ceiling in office 2

27> Ceiling in office hallway

26> Looking south across pavement to SW corner

28> East side gate and entrance

BEC Former Dollar Rent-A-Car at BHM Hazardous Material Assessment

29> Looking north along Airline Drive boundary

31> Viw of building

30> Air compressor at wash bay door

32> Looking west along north side of building

33> Vacuum at wash bay exit

35> Vacuum at wash bay exit (joint sealer storage in drums)

34> Looking south along east side of building

36> Looking at north side of building

39> Looking west along south side of building

38> Metal roof

40> Metal roof

APPENDIX C

(Homogenous Sample Logs & Materials List)

BECC Project #325049

ACM Sample Log

	MAP SHEET						
FIELD ID	ID	FLOOR	SAMPLE DESCRIPTION	LOCATION	EST. QUANTITY	CONDITION	*RESULTS
FT-1	1	1	Gray/Blue vinyl floor tile + mastic, 12x12	Office Hallway	N/A	UD	ND
FT-2	2	1	Gray/Blue vinyl floor tile + mastic, 12x12	Office Hallway	N/A	UD	ND
FT-3	3	1	Gray/Blue vinyl floor tile + mastic, 12x12	Office Hallway	N/A	UD	ND
FT-4	4	1	Brown vinyl floor tile + mastic, 12x12	Service Area Restroom	N/A	D	ND
FT-5	5	1	Brown vinyl floor tile + mastic, 12x12	Service Area Restroom	N/A	D	ND
WJ-1	6	1	Wall Joint Compound	Office Hallway	N/A	UD	ND
WJ-2	7	1	Wall Joint Compound	Office Hallway	N/A	UD	ND
WJ-3	8	1	Wall Joint Compound	Office Hallway	N/A	UD	ND
CT-1	9	1	Acoustical Ceiling Tile, White Pattern	Office Hallway	N/A	D	ND
CT-2	10	1	Acoustical Ceiling Tile, White Pattern	Office Hallway	N/A	D	ND
I-1	11	1	Building Insulation w/ flashing	Service Area Restroom Entrance	N/A	UD	ND
I-2	12	1	Building Insulation w/ flashing	Service Bay	N/A	UD	ND
	EA = each	SF = square	feet LF = linear feet ND = none detected	UD = undamaged D = damaged	SD = significant	ly damaged	

 $[\]hbox{* See "ACM List \& Quantities" sheet for additional information on identified ACM}.$

Former Dollar Rent-A-Car

Hazardous Material Assessment

BECC Project #325049

LBP Sample Log

FIELD ID	MAP SHEET	FLOOR	ROOM/LOCATION	CONDITION	COLOR	SUBSTRATE	CONCENTRATION (%Pb by Wt.)
L-1	6	1	Office Hallway	UD	Tan/Blue	Sheetrock	<0.0044
L-2	7	1	Office Hallway	UD	Tan/Blue	Sheetrock	<0.0041

Former Dollar Rent-A-Car Birmingham-Shuttlesworth International Airport Birmingham, AL

BECC Project #325049

Other Suspected or Known Hazardous Material Inventory

Location Description	Equipment/Material	Potential or Known Hazardous Material	Quantity^
	Fluorescent light ballasts (4ft)	PCBs	17 ea
Offices	Lighted exit signs	Batteries, mercury	3 ea
	Fluorescent tube bulbs (4ft)	Mercury	57 ea
Wash Bay	Fluorescent light ballasts (6ft)	PCBs	8 ea
Wasii bay	Fluorescent tube bulbs (6ft)	Mercury	16 ea
	Fluorescent light ballasts (6ft)	PCBs	9 ea
	Fluorescent light ballasts (4ft in restroom)	PCBs	1 ea
Service Bay	Fluorescent tube bulbs (6ft)	Mercury	18 ea
Service day	Fluorescent tube bulbs (4ft in restroom)	Mercury	4 ea
	Hydraulic Reservoir (Fluid)	PCBs	1 ea
	Thermostats (1 in storage area)	Mercury	2 ea
	Transformer	PCBs	1 ea
Exterior	AC Unit	CFCs	1 ea
	Metal Halide Lights	Mercury	14 ea

APPENDIX D

(Laboratory Reports)

ASBESTOS ANALYTICAL REPORT By: Polarized Light Microscopy

Prepared for

BECC 32299

CLIENT PROJECT: Former Dollar Rental Car-BHM

LAB CODE: 667532-1

TEST METHOD: EPA 600 / R93 / 116 and EPA 40 CFR Appendix E to Subpart

E of Part 763

REPORT DATE: 06/23/25

Asbestos Report SummaryBy: Polarized Light Microscopy

Project: Former Dollar Rental Car-BHM **Lab Code:** 667532-1

Method: EPA 600 / R93 / 116 and EPA 40 CFR Appendix E to Subpart E of Part 763

Client ID	Lab ID	Layer	Sample Description	Asbestos %
FT-1	3481232		Gray/blue floor tile	None Detected
FT-1 (2)	3484557		Yellow mastic	None Detected
FT-2	3481233		Gray/blue floor tile	None Detected
FT-2 (2)	3484558		Yellow mastic	None Detected
FT-3	3481234		Gray/blue floor tile	None Detected
FT-3 (2)	3484559		Yellow mastic	None Detected
FT-4	3481235		Brown floor tile	None Detected
FT-4 (2)	3484560		Yellow mastic	None Detected
FT-5	3481236		Brown floor tile	None Detected
FT-5 (2)	3484561		Yellow mastic	None Detected
WJ-1	3481237		Tan/white joint compound	None Detected
WJ-2	3481238		Tan/white joint compound	None Detected
WJ-3	3481239		Tan/white joint compound	None Detected
CT-1	3481240		White/tan ceiling tile	None Detected
CT-2	3481241		White/tan ceiling tile	None Detected
I-1	3481242	Layer A	Silver flashing	None Detected
		Layer B	Yellow insulation	None Detected
I-2	3481243	Layer A	Silver flashing	None Detected
		Layer B	Yellow insulation	None Detected

ASBESTOS BULK ANALYSIS

By: Polarized Light Microscopy

Client: BECC 32299 **Lab Code:** 667532-1

360 Industrial Ln

Birmingham, AL 35211

Date Received: 06/20/25

Date Analyzed: 06/23/25

Date Reported: 06/23/25

Project: Former Dollar Rental Car-BHM

Method: ASBESTOS BULK PLM, EPA 600 METHOD

Client ID	Lab	Lab	NON-ASBES	NON-ASBESTOS COMPONENTS						
Lab ID	Description	Attributes	Fibrous	Nor	-Fibrous	%				
FT-1 3481232	Floor Tile	Tile Homogeneous Gray/blue Non-Fibrous Bound		100%	Vinyl	None Detected				
FT-1 (2) 3484557	Mastic	Homogeneous Yellow Non-Fibrous Bound		100%	Mastic	None Detected				
FT-2 3481233	Floor Tile	Homogeneous Gray/blue Non-Fibrous Bound		100%	Vinyl	None Detected				
FT-2 (2) 3484558	Mastic	Homogeneous Yellow Non-Fibrous Bound		100%	Mastic	None Detected				
FT-3 3481234	Floor Tile	Homogeneous Gray/blue Non-Fibrous Bound		100%	Vinyl	None Detected				
FT-3 (2) 3484559	Mastic	Homogeneous Yellow Non-Fibrous Bound		100%	Mastic	None Detected				
FT-4 3481235	Floor Tile	Homogeneous Brown Non-Fibrous Bound		100%	Vinyl	None Detected				

ASBESTOS BULK ANALYSIS

By: Polarized Light Microscopy

Client: BECC 32299 **Lab Code:** 667532-1

360 Industrial Ln Date Received: 06/20/25
Birmingham, AL 35211 Date Analyzed: 06/23/25

Date Reported: 06/23/25

Project: Former Dollar Rental Car-BHM

Method: ASBESTOS BULK PLM, EPA 600 METHOD

Client ID	Lab	Lab	١	NON-ASBESTO	ASBESTOS			
Lab ID	Description	Attributes		Fibrous	No	n-Fibrous	%	
FT-4 (2) 3484560	Mastic	Homogeneous Yellow Non-Fibrous Bound			100%	Mastic	None Detected	
FT-5 3481236	Floor Tile	Homogeneous Brown Non-Fibrous Bound			100%	Vinyl	None Detected	
FT-5 (2) 3484561	Mastic	Homogeneous Yellow Non-Fibrous Bound			100%	Mastic	None Detected	
WJ-1 3481237	Joint Compound	Heterogeneous Tan/white Non-Fibrous Bound			60% 35% 5%	Binder Calc Carb Paint	None Detected	
WJ-2 3481238	Joint Compound	Heterogeneous Tan/white Non-Fibrous Bound			60% 35% 5%	Binder Calc Carb Paint	None Detected	
WJ-3 3481239	Joint Compound	Heterogeneous Tan/white Non-Fibrous Bound			60% 35% 5%	Binder Calc Carb Paint	None Detected	
CT-1 3481240	Ceiling Tile	Heterogeneous White/tan Fibrous Loosely Bound	60% 20%	Cellulose Glass	15% 5%	Perlite Paint	None Detected	

ASBESTOS BULK ANALYSIS

By: Polarized Light Microscopy

Client: BECC 32299 **Lab Code:** 667532-1

360 Industrial Ln Date Received: 06/20/25
Birmingham, AL 35211 Date Analyzed: 06/23/25

Date Reported: 06/23/25

Project: Former Dollar Rental Car-BHM

Method: ASBESTOS BULK PLM, EPA 600 METHOD

Client ID	Lab	Lab	N	ON-ASBESTO	NENTS	ASBESTOS		
CT-2 3481241	Description	Attributes		Fibrous	Nor	n-Fibrous	%	
	Ceiling Tile	Heterogeneous White/tan Fibrous Loosely Bound	60% 20%	Cellulose Glass	15% 5%	Perlite Paint	None Detected	
I-1 Layer A 3481242	Flashing	Heterogeneous Silver Fibrous Bound	85% 10%	Cellulose Glass	5%	Foil	None Detected	
Layer B 3481242	Insulation	Homogeneous Yellow Fibrous Loosely Bound	100%	Glass			None Detected	
I-2 Layer A 3481243	Flashing	Heterogeneous Silver Fibrous Bound	85% 10%	Cellulose Glass	5%	Foil	None Detected	
 Layer B 3481243	Insulation	Homogeneous Yellow Fibrous Loosely Bound	100%	Glass			None Detected	

LEGEND:

Non-Anth = Non-Asbestiform Anthophyllite Non-Trem = Non-Asbestiform Tremolite Calc Carb = Calcium Carbonate

METHOD: EPA 600 / R93 / 116 and EPA 40 CFR Appendix E to Subpart E of Part 763

REPORTING LIMIT: 1% by calibrated visual estimation

REGULATORY LIMIT: 1%

Due to the limitations of the EPA 600 / R93 / 116 method, nonfriable organically bound materials (NOBs) such as vinyl floor tiles can be difficult to analyze via polarized light microscopy (PLM). EPA recommends that all NOBs analyzed by PLM, and found not to contain asbestos, be further analyzed by Transmission Electron Microscopy (TEM). Please note that PLM analysis of dust and soil samples for asbestos is not covered under NVLAP accreditation. Estimated measurement of uncertainty is available on request.

Eurofins Built Environment Testing East, LLC makes no warranty representation regarding the accuracy of client submitted information in preparing and presenting analytical results. Interpretation of the analytical results is the sole responsibility of the client. This report relates only to the samples tested or analyzed and may not be reproduced, except in full, without written approval by Eurofins Built Environment Testing East, LLC. Samples were received in acceptable condition unless otherwise noted. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Information provided by customer includes customer sample ID and sample description.

Khrista Petry Analyst

Khristen Petry

DATA QA:

Kathryn Wescott 6/23/2025

APPROVED BY:

Tianbao Bai, Ph.D., CIH Laboratory Director

June 24, 2025

Jeremy Mitchell BECC, Inc. 360 Industrial Ln Birmingham, AL 35211

CLIENT PROJECT: Former Dollar Rental Car-BHM

LAB CODE: 667568-1

Dear Jeremy,

Enclosed are lead analysis results for chemistry samples received at our laboratory on June 20, 2025. The samples were analyzed for lead using flame atomic absorption spectrophotometry.

Thank you for your business and we look forward to continuing good relations.

Kind Regards,

Tianbao Bai, Ph.D., CIH Laboratory Director

AIHA LAP 103025

7469 Whitepine Rd North Chesterfield, VA 23237 Telephone: 800.347.4010

Lead Paint Chip Analysis Report

Report Number: 25-06-04319

Client: **Eurofins Built Environment Testing East**

730 S.E. Maynard Road

Cary, NC 27511

Received Date: 06/23/2025

Analyzed Date: 06/23/2025 **Reported Date:** 06/23/2025

Project/Test Address: 667568 **Collection Date:** 06/20/2025

Client Number: Laboratory Results 34-1445

Fax Number: 919-481-1442

Lab Sample Number	Client Sample Number	Collection Location	Pb (ug/g) ppm	% Pb by Wt.	Narrative ID
25-06-04319-001	L-1	L-1	<44	<0.0044	
25-06-04319-002	L-2	L-2	<41	<0.0041	

Preparation Method: ASTM E-1979-17 **Analysis Method:** EPA SW846 7000B

Reviewed By Authorized Signatory:

Milipa Kanude

Melissa Kanode QA/QC Clerk

The Reporting Limit (RL) for samples prepared by ASTM E-1979-17 is 10.0 ug Total Pb. The RL for samples prepared by EPA SW846 3050B is 25.0 ug Total Pb. Paint chip area and results are calculated based on area measurements determined by the client. All internal quality control requirements associated with this batch were met, unless otherwise noted.

The condition of the samples analyzed was acceptable upon receipt per laboratory protocol unless otherwise noted on this report. Results represent the analysis of samples submitted by the client. Sample location, description, area, etc., was provided by the client. Results reported above in mg/cm3 are calculated based on area supplied by client. This report shall not be reproduced except in full, without the written consent of Environmental Hazards Services, L.L.C.

ELLAP Accreditation through AIHA LAP, LLC (100420), NY ELAP #11714.

LEGEND Pb= lead		ug = microgram	ppm = parts per million
	ug/g = micrograms per gram	Wt. = weight	

APPENDIX E

(Chains of Custody)

Built Environment Testing

RES Job #: 667532

Effective

SUBMITTED BY	INVOICE TO	CONTACT INFORMATION	SERIES
Company: BECC 32299	Company: BECC 32299	Contact: Jeremy Mitchell	-1 PLM Priority 48
Address: 360 Industrial Ln	Address: 360 Industrial Ln	Phone: (205) 941-1119	
		Fax:	
Birmingham, AL 35211	Birmingham, AL 35211	Cell:	
Project Number and/or P.O. #: Q1-25062	Project Zip Code:	Final Data Deliverable Email Address:	
Project Description/Location: Former Dollar Rental Car-BHM		jmitchell@beccinc.com	

ASBESTOS LABORATORY	1				RE	QUESTE	D AI	NALYSIS				V	ALID	MATR	IX CO	DES		LAB NOTES
PLM / PCM / TEM	DTL RUSH PRIORITY STANDARD		i									Ai	r = A		1	Bulk = I	3	
												Du	st = D		1	Food =	F	
CHEMISTRY LABORATORY											L	Pai	nt = P		<u>į</u>	Soil = S	3	
Dust	RUSH PRIORITY STANDARD											Surfa	ice = S	U	S	wab = S	SW	
	*PRIOR NOTICE REQUIRED FOR SAME DAY TAT										L	Tap	oe = T		١	۱ Vipe = ۱	Ν	
Metals	RUSH PRIORITY STANDARD												Drink	king Wa	iter = D	W		
											ļ		Was	ste Wate	er = WV	٧		
Organics*	SAME DAY RUSH PRIORITY STANDARD	16)									**A	STM E	1792 a	approve	ed wipe	media	only**	
MICROBIOLOGY LABORA	TORY	-93/1										-						
Viable Analysis**	PRIORITY STANDARD	300/R											iquot					
	**TAT DEPENDENT ON SPEED OF MICROBIAL GROWTH	PA/6											ea/Al					
Medical Device Analysis	RUSH STANDARD	oort (EPA/600											or Ar					
Mald Analysis	RUSH PRIORITY STANDARD	Rep									ea	õ	/idth(
Mold Analysis		Short									.).	nre (× (9					
	establish a laboratory priority, subject to laboratory volume and are not Additional fees apply for afterhours, weekends and holidays.**	PLMS				ø	IICS	g	Τ		me (L	perat	Aliquots) x		S.	ged ✓	ted	
Special Instructions:	Additional 1000 apply for alternouncy, montenae and monaeye.	PLM-P		PCM	DUST	METALS	ORGANICS	VIABLES	MEDICAL	2	nple Volume (L) / Area	Tem	or Ali	ode	of Container	Date Collected mm/dd/yy	Time Collected hh:mm	Laboratory Analysis
		4		٦	4 - 3					_		m ple	-ength(or	Matrix Code	Ş	Date (ine i	Instructions
Client Sample ID Number	(Sample ID's must be unique)	A	SBES	TOS	C	HEMISTI	RY	MICROBI	OLOG'	/ ICC	Sa	Sa	۳	ğ	#			
1 FT-1		X			ļ		<u>.</u>					<u></u>	<u> </u>	В	<u>.</u>	<u> </u>		
2 FT-2		X	. <u>į</u>		ļj		į					ļ	ļ	В	į	<u>į</u>		
3 FT-3		X			ļ							<u>.</u>	<u>.</u>	В	<u>į</u>	<u>.</u>		
4 FT-4		X	<u> </u>	<u> </u>	ļ						_	<u> </u>	<u> </u>	В	<u> </u>	<u> </u>		
5 FT-5		X	. .				į					ļ	ļ	В	ļ	ļ		
6 WJ-1		X			ļļ							.	ļ	В	į	ļ		
7 WJ-2		X	<u> </u>		ļļ		<u>.</u>				4	ļ	ļ	В	<u> </u>	<u> </u>	<u>.</u>	
8 WJ-3		X	.		ļļ		ļ				4	.	ļ	В		ļ	ļ	
9 CT-1		X	.		ļļ		<u></u>				4		<u></u>	В		<u></u>		
10 CT-2		X	.		ļļ		<u>.</u>				4		ļ	В	‡	ļ	ļ	
11 1-1		X	.		ļļ		ļ				4	.	ļ	В	ļ	ļ	ļ	
12 I-2		X	:		1		3		: :				:	В	1	1	:	

Eurofins Built Environment Testing East, LLC establishes a unique Lab Sample ID, for each sample, by preceding each unique Client Sample ID with the laboratory RES Job Number.

Eurofins Built Environment Testing East, LLC will analyze incoming samples based on information received and will not be responsible for errors or omissions in calculations resulting from the inaccuracy of original data. By signing, client/company representative agrees that submission of the following samples for requested analysis as indicated on this Chain of Custody shall consitute an analytical services agreement with payment terms of NET 30 days. Failure to comply with payment terms may result in a 1.5% monthly interest surcharge.

Relinquished By:			Date/Time: 06/20/2025 14:55:14	Sample Condition: Acceptable
Received By:	was	William Ivey	Date/Time: 06/20/2025 14:55:14	Carrier: Fed-Ex

CHAIN OF CUSTODY

CEL

730 SE Maynard Road, Cary, NC 27511 Tel: 866-481-1412; Fax: 919-481-1442

LAB USE ONLY:	
CEI Lab Code: 675)2	
CEI Lab I.D. Range:	

COMPAN'	YINFORMATION	PROJECT INFORMATION
CEI CLIEN	T #:	Job Contact: Jeremy Mitchell
Company:	BECC, Inc.	Email / Tel: jmitchell@beccinc.com / 205-283-7302
Address:	360 Industrial Lane	Project Name: Former Dollar Rental Car-BHM
	Birmingham, AL 35211	Project ID#:
Email:	lkmorrison@beccinc.com	PO#: Q1-25062
Tel: 205-	941-1119 Fax: 205-941-1198	STATE SAMPLES COLLECTED IN: AL

IF TAT IS NOT MARKED STANDARD 3 DAY TAT APPLIES

				TURN AR	DUND TIME		
ASBESTOS	METHOD	4 HR	8 HR	1 DAY	2 DAY	3 DAY	5 DAY
PLM BULK	EPA 600				X		
PLM POINT COUNT (400)	EPA 600						
PLM POINT COUNT (1000)	EPA 600						
PLM GRAV w POINT COUNT	EPA 600	W 33					
PLM BULK	CARB 435						
PCM AIR	NIOSH 7400						
TEM AIR	EPA AHERA						
TEM AIR	NIOSH 7402						
TEM AIR (PCME)	ISO 10312						
TEM AIR	ASTM 6281-15						
TEM BULK	CHATFIELD						
TEM DUST WIPE	ASTM D6480-05 (2010)						
TEM DUST MICROVAC	ASTM D5755-09 (2014)						
TEM SOIL	ASTM D7521-16	100	OF THE				
TEM VERMICULITE	CINCINNATI METHOD						
TEM QUALITTATIVE	IN-HOUSE METHOD						
OTHER:							

REMARKS / SPECIAL	INSTRUCTIONS:		Accept Samples 6/20/2
Relinquished By:	Date/Time	Received By:	Date/Time
J. MITCHEL	6/18/25 16:00	lon	6-20-25 10:05
Samples will be disposed	1 of 20 down off		

Samples will be disposed of 30 days after analysis

Page _ 1 _ of _ 3 Version: CCOC.01.18.1/2.LD

8 186 3783 5817

SAMPLING FORM

CEI

COMPANY CONTACT INFORMATION	
Company: BECC, Inc.	Job Contact: Jeremy Mitchell
Project Name: Former Dollar Rental Car-BHM	jmitchell@beccinc.com
Project ID #: Q1-25062	Tel: 205-283-7302

SAMPLE ID#	DESCRIPTION / LOCATION	VOLUME/ AREA	T	EST
CANTILLE ID#	SEE ATTACHED LOG		PLM	TEM
	OLL ATTACABLE STATE		PLM	TEM
			PLM	TEM
			PLM	TEM
			PLM	TEM
	-1		PLM	TEM
		-	PLM	TEM .
			PLM	TEM

Former Dollar Rental Car-BHM

Hazardous Material Assessment

BECC Project No. Q1-25062

ACM Sample Log

FIELD ID	SAMPLE DESCRIPTION	LOCATION	CONDITION
FT-1	Gray/Blue vinyl floor tile + mastic, 12x12	Office Hallway	UD
FT-2	Gray/Blue vinyl floor tile + mastic, 12x12	Office Hallway	UD
FT-3	Gray/8lue vinyl floor tile + mastic, 12x12	Office Hallway	UD
FT-4	Brown vinyi floor tile + mastic, 12x12	Service Area Restroom	D
FT-5	Brown vinyl floor tile = mastic, 12x12	Service Area Restroom	D
WJ-1	Wall Joint Compound	Office Hallway	UD
WJ-2	Wall Joint Compound	Office Hallway	UD
WJ-3	Wall Joint Compound	Office Hallway	UD
CT-1	Acoustical Ceiling Tile, White Pattern	Office Hallway	0
CT-2	Acoustical Ceiling Tile, White Pattern	Office Hallway	D
1-1	Building Insulation w/ flashing	Service Area Restroom Entrance	UD *
1.2	Building Insulation w/ flashing	Service Bay	UD

ENVIRONMIENTAL HAZARDS SERVICES, LLC

Lead Chain of Custody Form

THE T IS

Limbing	Name	Eurofins CEI -	Cary							Aust	uu. = 3	4-14	45				
Ештрилу Ле	differen	730 SE Mayna	ard Roa	d, Car	y, NC 27	511			- 3	ay/Stern	HEN C	ary.	North	Caro	lina 27	511	
- 1	Proud	919-481-1413									impil.)C	EI-R	ecop	tion@	ET Eur	ofinsU	S.cor
Project No	MONEY?	Torting hapriss	L24 (167	568												
of Hamper		Same as Proje	oct Nam	16			C5/(d)	ten t	34	LM	(
ant Armins	Lime	O 5 Day	031	Day	020	yar		1 Da	y .	O Sar	ne Day	1/4	Veek	end-	Must (Call Al	nead
o indovidue 2	See Ym	arringus lands	ENER	QFM)			The		-	See.	NEW THAT	YORK	CITY I	DOS	T WIPE P	ROJECT	i rin
p.	W E	ry Bigg		MASS			577mm	in the state of	EVINTE	1	SOUTH	H			Marie Marie		
	09		remain	_			38%	10	- 3	-	Bensi	-				Time of	-
	+	and the latest terminal termin	Mary	se o	-	_	Titro	W.	=	-	(Seption)	1	+	-000	-	0-1+	-
1		10000					1921				Line		19	in		100	
			2						- ki		-546	_	- 9	6)		14	
10			1.8		100				1300		pro o trace Licoros			1	9 -	4	1
Tale		Culturality Circ	Statute		184			- 1	Section	Post	de promi	100	Self-	the lates	fold from	Haw Bill	NV Supr
1			100						9	1110	my if ass nequest i		×.	8	30	2	1
1 -1	_	122.00	0.0			_		-	-	-	appropri		-	-			-
L-1		6-20-25	PC.		L-1 L-2	_	_	+	-		-	-	-				-
L	-	9	PC		2.0	-		+			- 1		-		-	-	-
1					_			-	-		d.	-		-			
				_	_			-			4					_	-
								7									1
								7									
											7						
								\exists			Y .						
									, 1		-						
			1							100	0.1						
Releases	₫ By.	6	n	/	- 4	1	at≘	6	-20	-25		1.0	me	3	5:00	PA1	
Signa	ture.				Ca	cio	5	1	lar	que	12						
	10.1			_	URBA	SE ON	y - BELO	W tige!	H.BC		_						
eceived By	H	Him	oh	res	LL	1	1						25-	06-0	4319		
-	TT)		-		~	-					Ш		Ш			
Signature	++			-		-	-	_			- 00		Manage Co.		DESCRIPTION OF		
inte (0	2	3 25 1	tios (9	40)	1		JPV					e Dat 24/2			
1010	-		-		, ,		10	en s						lesd:			
Portal ic	ornact	Added												AE		3:00P	M
S. 7469 (4)	HITER	NE RD, RICHMON	(D. 1/A. 7	2222	(800)-34	17 10	r.H.										
		CLIENT PORTAL									4						

Built Environment Testing

RES Job #: 667568

SUBMITTED BY	INVOICE TO	CONTACT INFORMATION	SERIES				
Company: BECC 32299	Company: BECC 32299	Contact: L Morrison	-1 Chem Priority 48				
Address: 360 Industrial Ln	Address: 360 Industrial Ln	Phone: (205) 941-1119					
		Fax:					
Birmingham, AL 35211	Birmingham, AL 35211	Cell:					
Project Number and/or P.O. #: Q1-25062	Project Zip Code:	Final Data Deliverable Email Address:					
Project Description/Location: Former Dollar Rental Car-BHM		Ikmorrison@beccinc.com (+ 1 ADDNL. CONTACTS)					

ASBESTOS LABORATOR	ASBESTOS LABORATORY				RI	EQUESTE	DΑ	NALYSIS					VA	ALID I	MATR	IX CO	DES		LAB NOTES
PLM / PCM / TEM	DTL RUSH PRIORITY STANDARD												Air	= A			Bulk = E	3	
						İ							Dus	t = D]	ood =	F	
CHEMISTRY LABORATOR	Y												Pair	nt = P		<u> </u>	Soil = S	3	
Dust	RUSH PRIORITY STANDARD												Surfac	ce = SI	U	S	wab = S	SW	
	*PRIOR NOTICE REQUIRED FOR SAME DAY TAT												Тар	e = T		٧	Vipe = \	N	
Metals	RUSH PRIORITY STANDARD										-			Drink	ing Wa	iter = D'	N		
											_			Was	te Wate	er = WV	V		
Organics*	SAME DAY RUSH PRIORITY STANDARD										-	**AS	TM E	1792 a	pprove	ed wipe	media	only**	
MICROBIOLOGY LABORA	TORY													_					
Viable Analysis**	PRIORITY STANDARD					846)								iquot					
Medical Device Analysis	**TAT DEPENDENT ON SPEED OF MICROBIAL GROWTH RUSH STANDARD					s) Pb (USEPA SW/								h(or Area/Al					
Mold Analysis	RUSH PRIORITY STANDARD					yte(s AA (Area	ပ္စ	Widt					
	establish a laboratory priority, subject to laboratory volume and are not . Additional fees apply for afterhours, weekends and holidays.**					LS - Anal by Flame	ORGANICS	LES	CAL			lume (L)/	mperature	Aliquots) x	Ф	ners	ected 1/yy	ected	
Special Instructions:		PLM	TEM	Σ N	DUST	META Lead t	ORG,	VIABLES	MEDIC,	MOLD		nple Vo	mple Te	igth(or,	Matrix Code	of Contair	Date Collected mm/dd/yy	Time Collected hh:mm	Laboratory Analysis Instructions
Client Sample ID Number	(Sample ID's must be unique)	AS	SBES	TOS	C	HEMISTR	RY	MICROBI	OLOC	3Y I	СО	Sar	Sar	Ler	Ma	# 0	Δ -	F	
1 L-1						X				I					P	ļ			
2 L-2						X									P				

Eurofins Built Environment Testing East, LLC establishes a unique Lab Sample ID, for each sample, by preceding each unique Client Sample ID with the laboratory RES Job Number.

Eurofins Built Environment Testing East, LLC will analyze incoming samples based on information received and will not be responsible for errors or omissions in calculations resulting from the inaccuracy of original data. By signing, client/company representative agrees that submission of the following samples for requested analysis as indicated on this Chain of Custody shall consitute an analytical services agreement with payment terms of NET 30 days. Failure to comply with payment terms may result in a 1.5% monthly interest surcharge.

Relinquished By:			Date/Time: 06/20/2025 15:56:10	Sample Condition: Acceptable
Received By:	M	Carlos Romero	Date/Time: 06/20/2025 15:56:10	Carrier: Fed-Ex

CHAIN OF CUSTODY

730 SE Maynard Road, Cary, NC 27511 Tel: 866-481-1412; Fax: 919-481-1442

LAB USE ONLY:	
CEI Lab Code: 667564	3
CEI Lab I.D. Range:	

COMPANY INFORMATION	PROJECT INFORMATION
CEI CLIENT #:	Job Contact: Jeremy Mitchell
Company: BECC, Inc.	Email / Tel: jmitchell@beccinc.com / 205-283-7302
Address: 360 Industrial Lane	Project Name: Former Dollar Rental Car-BHM
Birmingham, AL 35211	Project ID#
Email: Ikmorrison@beccinc.com	PO#: Q1-25062
Tel: 205-941-1119 Fax: 205-941	NICK TO THE RESERVE T

IF TAT IS NOT MARKED STANDARD 3

	METHOD	TURN AROUND TIME						
Analyte		4 HR**	8 HR**	1 DAY**	2 DAY	3 DAY	5 DAY	
LEAD PAINT	EPA SW846 7000B	AMERICAN STREET		San Sala	X	JOAT	5 DAT	
LEAD WIPE	EPA SW846 7000B	The state of the		S. 19. 19.				
LEAD SOIL	EPA SW846 7000B	18 45 51		1 THE 2		 -		
LEAD AIR	EPA SW846 7000B			1 1500 11				
LEAD TCLP	EPA SW846 7000B		May to	13.33				
RCRA 8 METALS	EPA SW846 7000B			17 95 17 17				
RCRA 8 TCLP	EPA SW846 7000B			13 TO 1				
OTHER:	211,011040 7000B	100						

^{**}TAT IS NOT AVAILABLE. LEAD SAMPLES ARE SUBCONTRACTED FOR ANALYSIS TO AN ELLAP ACCREDITED LAB.

REMARKS:			
			Accept Samples Reject Samples
Relinquished By:	Date/Time	Received By:	Date/Time
1. MITCHALL O	118/25 16:00	Gm	6-20-25 10:05
amples will be disposed of 30	days after analysis		

SAMPLING FORM

CEI

Company:	BECC, Inc.		Jeremy Mitchell	
Project Name:	Former Dollar Rental Car-BHM	Job Contact:		
	our Dilly		jmitchell@beccinc.com	
Project ID #:	Q1-25062	Tel:	205-283-7302	

CAMPINI	A STATE OF THE PARTY OF THE PAR	N Processing	P. V
SAMPLE ID#	DESCRIPTION / LOCATION	VOLUME/AREA	00
	SEE ATTACHED LOG	MEA	COMMENTS
		13.5	

Former Dollar Rental Car-BHM

Hazardous Material Assessment

BECC Project No. Q1-25062

LBP Sample Log

FIELD ID	ROOM/LOC	ATION	CONDITION	COLOR	SUBSTRATE
1-1	Office Hall	Office Hallway			
1-2	Office Head	N. I.V.	UD	Tan/Blue	Sheetrock
	DOI: 10 THE HAIWAY		UD	Tan/Blue	Sheetrock
BKL =	below reportable limit	UD = undamaged	D = damaged	SD = significantly	

APPENDIX F

(Inspector Credentials)

Jeremy Mitchell, P.E. Technical Services Division Manager / Environmental Services Director

PROFILE

Mr. Mitchell performs a broad range of tasks for BECC including construction material testing, environmental studies, contamination and waste management, collecting field specimens for geotehonical and environmental studies, performing laboratory tests, geotechnical and foundation design recommendations, special inspections, and pavement mix and buildup designs. He provides engineering consultation for CMT projects as well as oversight and management of our testing laboratory, which includes maintaining certifications and accreditations such as AMRL, CCRL, AASHTO, as well as personnel training and qulaifications for NICET, IBC, and ACI. Mr. Mitchell also serves as Radiation Safety Officer for BECC's nuclear density gauge program.

Before joining BECC, Mr. Mitchell worked through his electircal background to geotechncial and environmental through previous work with Alabama Power Company's construction division, estimating and designing repairs and new construction of distribution systems. He has continued his education through a Master's degree focused on engineering business and specification development. After obtaining his Professional Engineering License in geotechnical engineering in 2007, Mr. Mitchell has furthered his knowledge with continuing education in topics such as foundations, soils, retaining walls, engineering forensics, asphalt and concrete pavement design, environmental assessments, remediation of contaminated sites, and soil vapor.

In particular, Mr. Mitchell has focused on environmental assessments for various projects for the last 8 years. These projects range from Phase I ESAs and NEPA Environmental Assessments to site specific sampling and waste remediation management. He conducts general hazardous material assessments as part of his Phase I ESAs and has also performed many Asbestos and Lead Surveys as the lead inspector. Other experiences also include abatement design, including material quantification and removal recommendations, and written specifications.

REGISTRATIONS

- Registered Professional Engineer, Geotechnical (Alabama, 2007)
- Accredited Asbestos Inspector (Alabama)
- Accredited Asbestos Abatement Designer (Alabama)

21 YEARS OF EXPERIENCE

EDUCATION

DEGREES

Bachelor of Science, Electrical Engineering (B.S.E.E.)

Master's of Science (M.S.E.E.), specializing in Engineering Business

CONTINUING EDUCATION

Rock Foundations & Drilled Shafts (2009)

Soil Settlement & Geotechnical Earth Walls (2010)

Finding Root Cause & Deep Foundations (2011)

Settlement & Soil Stabilization for Pavement (2012)

Soil Bearing Capacity, Contaminated Site Remediation, & Bioremediation (2013)

Concrete Parking Lots & Environmental Restorations (2014)

Monitored Natural Attenuation, Regulatory Requirements for Hazardous Waste Generators, Soil Vapor Extraction, & Avoiding Common Mistakes in Screening Level Risks (2015)

Brownfield Remediation (2016)

Designing the Abatement Project (2017)

EPA Spill Prevention Control & Countermeasure Plan (2019)

Roller Compacted Concrete (RCC)
Pavements & Full Depth Reclamation of
Asphalt Pavement with Cement (2020)

Assuring Project Quality & Constructing Wetlands for Water Purification (2021)

Negligent Engineering Failures, Settlement of Foundation Structures, Soil Mechanics, Biopiles for Site Remediation, & Stormwater Runoff (2023)

Jeremy Mitchell, P.E. Technical Services Division Manager / Environmental Services Director

PROJECT EXPERIENCE

Birmingham-Shuttlesworth International Airport Rental Car QTA | Birmingham, Alabama

Project role included survey and assessment of approximately 73 duplex structures. Provided ACM abatement specifications for demolition as well as field sampling and coordination during abatement. Managed air sampling data during the abatement process. Managed stormwater program and construction material testing during construction.

Asheville Army Reserve Center | East Flat Rock, North Carolina

Project role included geotechnical study of site as well as a NEPA and ARNG guided Environmental Assessment and Environmental Condition of Property assessment. Managed research for all NEPA elements pursuant to NEPA and DOD regulations and requirements.

Richmond AMSA & ARC at DSCR | Richmond, Virgnia

Project role included geotechnical study of site as well as a NEPA and ARNG guided Environmental Assessment and Environmental Condition of Property assessment. Managed research for all NEPA elements pursuant to NEPA and DOD regulations and requirements.

Birmingham-Shuttlesworth International Airport Land-Use Assessment | Birmingham, Alabama

Project role included environmental and geophysical study of 800+acres for land-use rehabilitation around the airport. Assessments included environmental impacts (existing and future) to physical media and biologicals, geophysical conditions impacting future development including subsurface, traffic patterns, socioeconomic, financial, and subsurface.

Fort Benning | Columbus, Georgia

Project role included conducting geotechnical study of tank training sites spanning 3 counties and several hundred miles, Best Management Practices plan review, and stormwater management of stream crossings.

Mayfield Cleaners VCP | Homewood, Alabama

Project role field sampling and characterization of contamination from former cleaners. Managed the Voluntary Cleanup Program with ADEM, including sampling programs, documentation, and contamination characterization.

Various Phase I Environmental Site Assessments | Across the United States

Project role included conducting Phase I ESAs, coordination with state agencies, and advisory role through review of existing contamination and previous site assessments. Assessments were performed in AL, AR, CO, CT, FL, GA, IA, IL, IN, KC, KY, MD, MI, MN, MS, MO, NC, NJ, NY, OH, OK, OR, PA, SC, TN, TX, VA, VT, WI, and WY.

Progressive Stadium | Birmingham, Alabama

Project role included conducting environmental study of the property including historical land-use, identifying Areas of Concern, conducting field sampling, and evaluating contamination and risk for development.

Children's Hospital | Birmingham, Alabama

Project role included management of construction material testing, special inspection of all reinforced concrete members in the field for the 13-story hospital.

US Army Reserve Center - Ft. Bliss | El Paso, Texas

Project role included conducting Hazardous Material Assessment of a 35,000sf training facility and 15,000sf vehicle maintenance shop (VMS), including an asbestos and lead-based paint survey. Conducted field sampling and assessment of building materials and chemical storage and use.

Auburn University Regional Airport | Auburn, Alabama

Project role included Hazardous Material Assessment, including an asbestos and lead survey, abatement project specifications for demolition of the old terminal building. Also provided management of construction materials testing and Quality Assurance asphalt laboratory testing with PWL and Pay Factor analysis of Taxiway Alpha for the FAA.

Birmingham-Shuttlesworth International Airport Taxiway Gamma Rehabilitation | Birmingham, Alabama

Project role included FAA pavement mix design and geotechnical study of existing pavement structure. Also provided management of construction materials testing and Quality Assurance asphalt laboratory testing with PWL and Pay Factor analysis of Taxiway Alpha for the FAA.

Robins Air Force Base | Warner Robins, Georgia

Project role included conducting Hazardous Material Assessment of a 400,000sf aerospace manufacturing facility and hanger machine shop renovation. Project included an asbestos and lead survey, metallic dust sampling, and coordination of operation shutdowns during remediation and renovations.

UAB Center for Arts and Sciences | *Birmingham, Alabama*

Project role included management of construction material testing, deep foundation inspections, special inspection of reinforced concrete members in the field, and UST closure and petroleum contaminated soil removal.

Regions Field | Birmingham, Alabama

Project role included conducting and managing construction material testing and special inspection of reinforced concrete members in the field and providing daily inspections of drilled shafts and engineering consultation for all geotechnical matters.

United States Steel Corporation | Fairfield,

Alabama

Project role included conducting field sampling for soil and groundwater at the Fairfield, Alabama, campus. Provided characterization of contamination and affected media, including hydraulic conductivity analysis and migration of groundwater.

THE UNIVERSITY OF ALABAMA®

UA SafeState

has examined the documentation of asbestos training and qualifications of the person named below and confers this

Certificate of Accreditation

Asbestos Inspector Renewal

Alabama Accreditation Number

AIN0325556012

Certificate Expiration Date March 4, 2026

Act, Alabama Act No. 89-517, May, 1989 and Alabama Act No. 97-626, May, 1997. of Alabama SafeState Program by the Alabama Asbestos Contractor Accreditation This certificate has been issued pursuant to the authority granted to The University

Holyn Tew

Without lad oury

Associate Director for Environmental Programs

Environmental Services Manager

The Environmental Institute

Jeremy Mitchell

Social Security Number - XXX-XX-3708 BECC, Inc. - 360 Industrial Lane, Birmingham, AL 35211

Has completed 4 hours of synchronous online coursework and satisfactorily passed an examination that meets all criteria required for EPA/AHERA/ASHARA (TSCA Title II) Approved Reaccreditation

Asbestos in Buildings: Inspector Refresher

March 4, 2025

March 4, 2025

March 4, 2026

Expiration Date

20372

Certificate Number

Alabama Asbestos Acreditation Number: SS-2210-ASBTPI-01 - Issue Date June 1, 2023

GA DNR-EPD, 4244 International Pkwy, Atlanta, GA 30354 - Acreditation Number: 30-091420-001 - Issue Date June 7, 2023

TEI - 9755 Dogwood Road, Suite 350, Roswell, GA 30075 Phone: 770-427-3600 - Website: www.tei-atl.com

SECTION 01 1001 - CIVIL DRAWINGS AND TECHNICAL SPECIFICATIONS

BIRMINGHAM AIRPORT AUTHORITY DOLLAR CAR RENTAL BUILDING DEMOLITION

		111	iiii	111.	
DATE	//	9/8/2025			
DESCRIPTION	NOT FOR CONSTRUCTION	FINAL DESIGN (EXC. ELECTRICAL)			
٩RK					

Guard Historica

0

SHEET TITLE SHEET

CIVIL ENGINEER

SARCOR, LLC 215 19TH STREET SOUTH SUITE 101 BIRMINGHAM, AL 35203

CONTACT: JEFFREY HAVERCROFT, P.E. (205) 706-8170 JEFF@SARCORLLC.COM

SURVEYOR

ENGINEERING DESIGN TECHNOLOGIES, INC. 215 19TH STREET N SUITE 201 BIRMINGHAM, AL 35203

CONTACT: ROBERT WEIMORTS, P.L.S (205) 942-8630 ROBERT.WEIMORTS@EDTINC.NET

GENERAL NOTES

BIRMINGHAM AIRPORT AUTHORITY (BAA)

CONTACT: DR. SCHAVASS HAMILTON

(205) 599-0776

(205) 480-3018

SHAMILTON@FLYBHM.COM

5900 MESSER AIRPORT HWY

BIRMINGHAM, AL 35212

OWNER

MOBILE:

SITE SURVEY WAS PROVIDED BY THE FOLLOWING COMPANY:

ENGINEERING DESIGN TECHNOLOGIES, INC. 215 19TH STREET NORTH, SUITE 201 BIRMINGHAM, AL 35203 PHONE: (205) 942-8603 CONTACT: ROBERT WEIMORTS, P.L.S.

- 2. ALL PHASES OF SITE WORK FOR THIS PROJECT SHALL MEET OR EXCEED THE OWNER/DEVELOPER SPECIFICATIONS. THE ENGINEER HAS MADE EVERY EFFORT TO SET FORTH THE COMPLETE SCOPE OF WORK IN THE CONSTRUCTION AND CONTRACT DOCUMENTS. THE CONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS IN THE DRAWINGS AND/OR SPECIFICATIONS SHALL NOT EXCUSE THE CONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS. ALL WORK SHALL BE AS INDICATED AND STIPULATED ON THE DRAWINGS AND IN THE SPECIFICATIONS
- THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS TO FAMILIARIZE HIM/HERSELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.
- 4. THE CONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS AND/OR CONTRACT DOCUMENTS.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS TECHNIQUES, SEQUENCES, AND PROCEDURES, AND FOR COORDINATING ALL PORTIONS OF WORK UNDER THE CONTRACT. EACH CONTRACTOR SHALL COOPERATE WITH THE OWNER'S REPRESENTATIVE, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- THESE DRAWINGS ARE FORMATTED FOR 24" X 36". OTHER SIZE VERSIONS ARE NOT PRINTED TO THE SCALE CALLED OUT OR SHOWN
- CONTRACTOR IS RESPONSIBLE FOR THE COST AND FEES ASSOCIATED WITH THE EXECUTION OF WORK. THIS INCLUDES ANY AND ALL PERMITS AND IMPACT FEES INCLUDING, BUT NOT LIMITED TO, DEMOLITION PERMITS, ADEM PERMIT FEES, BUILDING PERMITS, SANITARY SEWER FEES AND IMPACT FEES, WATER TAP FEES, ETC.
- 8. A. IN THE CASE OF UNFORESEEN CONSTRUCTION COMPLICATIONS OR DISCREPANCIES, THE CONTRACTOR IS TO IMMEDIATELY NOTIFY THE ENGINEER OF RECORD IN WRITING.
- B. IF THE CONTRACTOR DAMAGES ANY (EXISTING) SITE FEATURES DURING CONSTRUCTION, HE SHALL AT HIS OWN EXPENSE REPLACE OR REPAIR THE FEATURES IMMEDIATELY TO ORIGINAL CONDITION AND QUALITY AS APPROVED BY THE OWNER OR DESIGNATED REPRESENTATIVE.
- C. IT IS SOLELY THE CONTRACTOR'S RESPONSIBILITY TO FOLLOW ALL SAFETY CODES OF THE GOVERNING MUNICIPALITIES.
- D. DEVIATIONS FROM THESE PLANS AND ANY ASSOCIATED SPECIFICATIONS WITHOUT PRIOR WRITTEN CONSENT OF THE ENGINEER OF RECORD MAY CAUSE WORK TO BE UNACCEPTABLE.
- E. WHEN APPLICABLE, FIRE DEPARTMENT ACCESS SHALL BE ALWAYS MAINTAINED.

F. WHEN APPLICABLE, SUFFICIENT BARRICADES, LIGHTS, SIGNS, AND OTHER TRAFFIC CONTROL DEVICES AND METHODS WHICH MAY BE NECESSARY FOR THE PUBLIC SAFETY AND PROTECTION SHALL BE IN ACCORDANCE WITH GOVERNING ORDINANCES AND M.U.T.C.D. (CURRENT EDITION) AND SHALL BE PROVIDED AND MAINTAINED THROUGHOUT CONSTRUCTION.

PROJECT PHASING

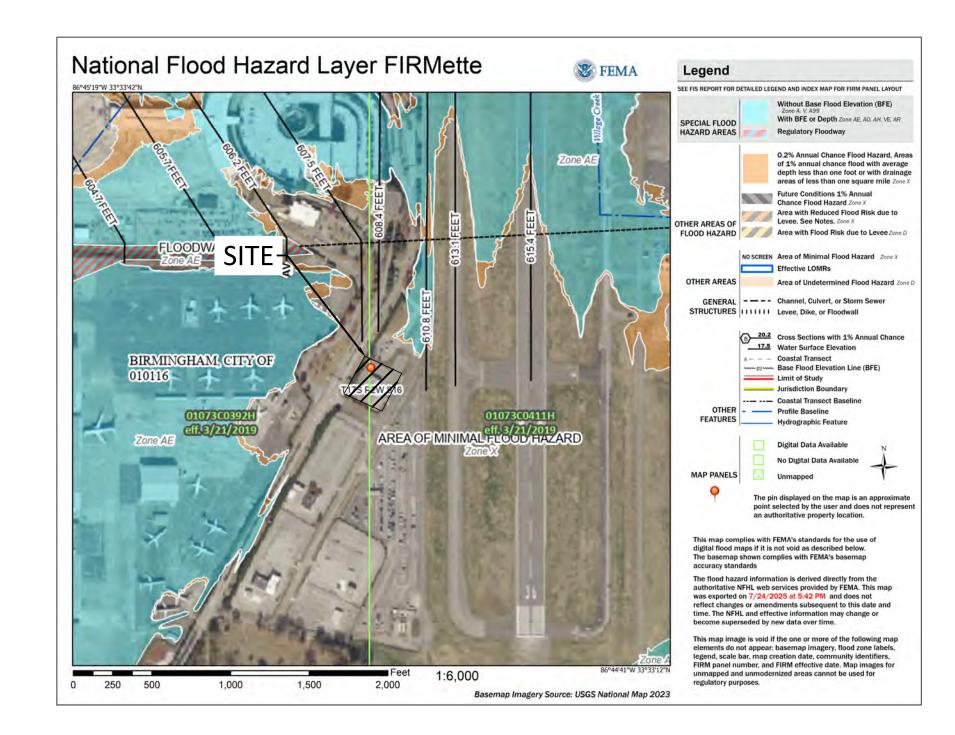
Phase: Single Phase (Phase 1) Duration: 60 Calendar Days NOTICE TO PROCEED (NTP): TBD

Substantial Completion: TBD (NTP + 60 days)

SHEET INDEX

TITLE SHEET C-2.0 DEMOLITION PLAN C-3.0 SITE PLAN C-4.0 **EROSION CONTROL PLAN** C-5.0 **DETAIL DRAWINGS**

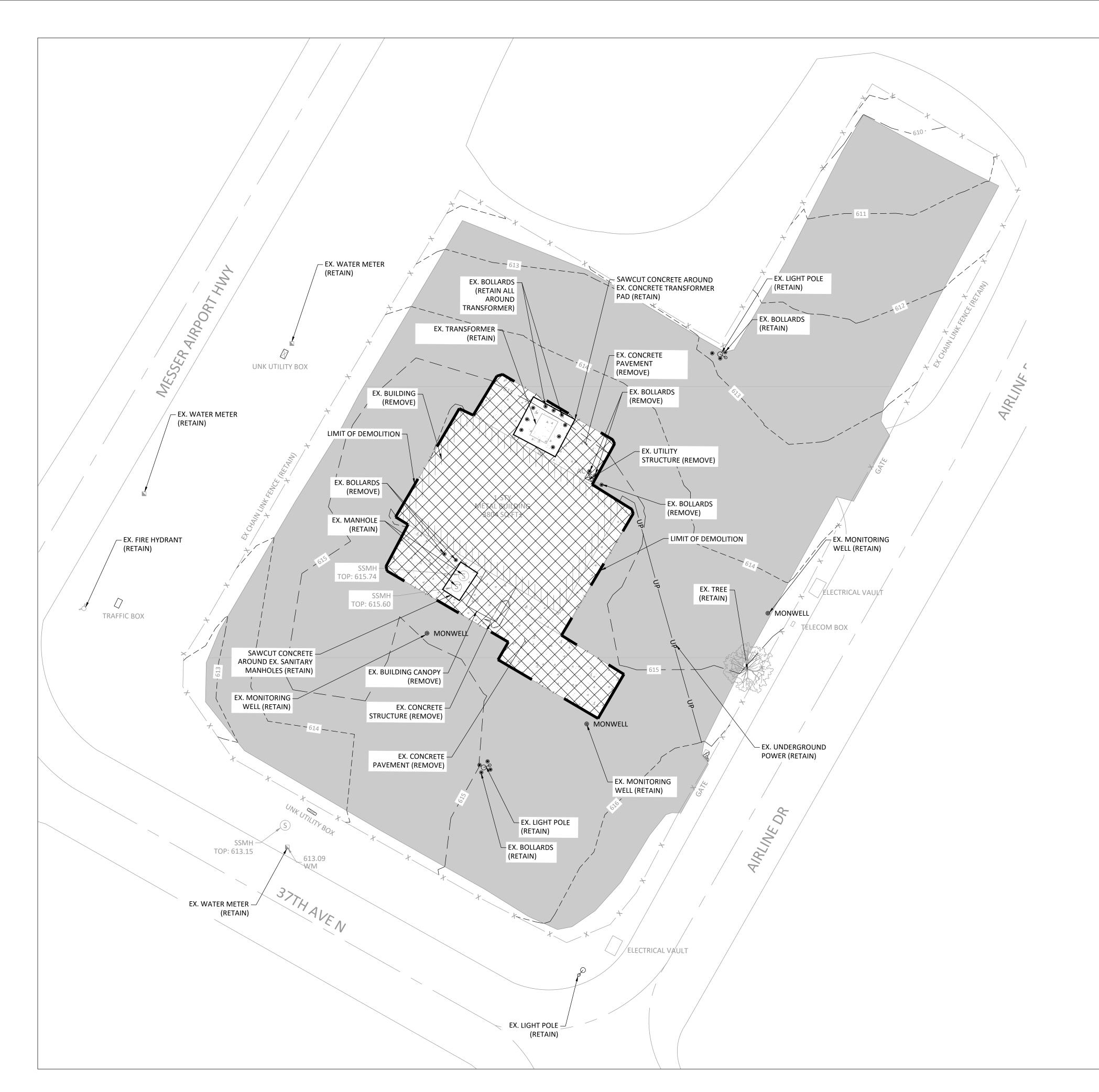
SITE ADDRESS	5600 AIRLINE DRIVE, BIRMINGHAM, AL 35212
PARCEL I.D.	23 00 16 1 000 002.000
OTAL SITE ACREAGE	1.29 AC (56224.12 SF)
ONING	M2

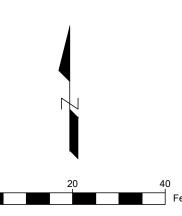


SITE SUMMARY

E ADDRESS	5600 AIRLINE DRIVE, BIRMINGHAM, AL 35212
RCEL I.D.	23 00 16 1 000 002.000
TAL SITE ACREAGE	1.29 AC (56224.12 SF)
NING	M2

PARCEL IDENTIFICATION: 23 00 16 1 000 002.000

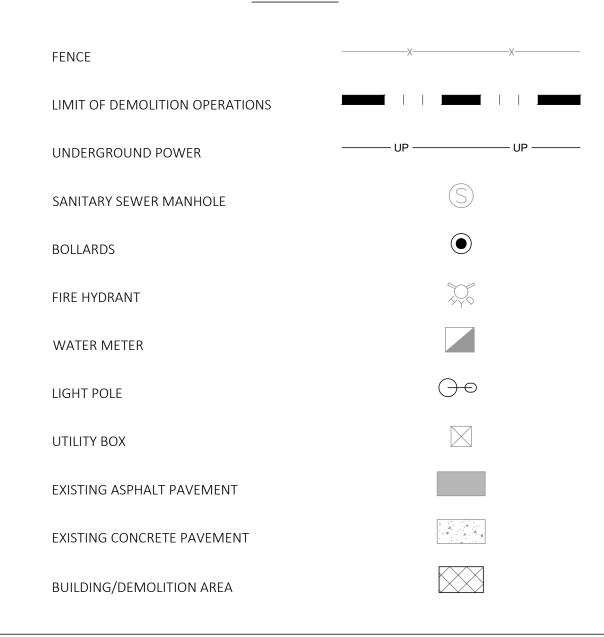

VICINITY MAP



FEMA MAP

EFFECTIVE DATE 03/21/2019 SITE IS LOCATED WITHIN FLOOD ZONE X

THERE IS NO FLOODPLAIN ON THIS PROPERTY AS PER FIRM PANEL 01073C0411H DATED 03/21/2019. NO WORK IS BEING DONE WITHIN A FLOODPLAIN. THE PROPERTY SHOWN HEREON LIES WITHIN ZONE X AND IS NOT WITHIN A SPECIAL FLOOD HAZARD AREA.



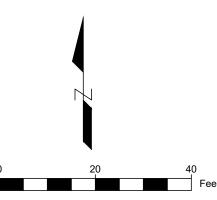
DEMOLITION NOTES

- 1. THE CONTRACTOR SHALL VERIFY LOCATION OF ALL UTILITIES AND PIPING WHICH MIGHT INTERFERE WITH DEMOLITION. ANY DAMAGES TO UTILITIES SHALL BE REPAIRED BY THE CONTRACTOR AT NO COST TO THE OWNER.
- 2. CONTRACTOR SHALL BE RESPONSIBLE FOR REMOVAL OF ALL DEBRIS.
- 3. ALL EXISTING PUBLIC SIDEWALKS ARE TO REMAIN IN PLACE AND TO REMAIN ACCESSIBLE FOR PEDESTRIAN TRAFFIC DURING DEMOLITION.
- 4. CONTRACTOR IS RESPONSIBLE FOR NOTIFYING ALL UTILITY COMPANIES BEFORE CONSTRUCTION AND VERIFYING LOCATION OF ALL UTILITIES SHOWN OR NOT SHOWN.
- 5. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION AND COST OF THE RELOCATION ON ADJUSTMENT OF ALL UTILITIES ON THE SITE ASSOCIATED WITH THE CONSTRUCTION OF THIS PROJECT, SUCH AS, BUT NOT LIMITED TO, SIGNAL POLES, SIGNAL CONTROLS, DRAINAGE STRUCTURES, TRAFFIC SIGNS, UTILITY POLES, GUY WIRES, ETC.
- 6. CONTRACTOR SHALL MAINTAIN SITE SECURITY BY CONTRACTOR'S OWN MEANS AND METHODS. ALL WORK, INCLUDING MATERIAL STORAGE, SHALL BE KEPT WITHIN THE PROTECTED AREA. CONTRACTOR SHALL RESTORE THE CONSTRUCTION AREA TO A CONDITION ACCEPTABLE TO THE OWNER.
- 7. ALL UTILITY WORK & MATERIALS SHALL MEET THE STANDARDS AND SPECIFICATIONS OF THE PERTINENT UTILITY.
- 8. ALL MANHOLE AND VALVE BOXES THAT ARE TO REMAIN ARE NOT TO BE BURIED AND FINAL GRADING SHALL BE ADJUSTED TO MATCH THOSE ELEVATIONS.
- 9. DEMOLITION OF ANY/ALL CONCRETE AND/OR ASPHALT SIDEWALKS, DRIVEWAYS, ETC. SHALL INCLUDE CLEAN CUTS AT LOCATIONS ABUTTING PUBLIC, OR OTHERWISE, SIDEWALKS AND/OR DRIVEWAYS, WHICH ARE TO REMAIN IN PLACE.
- 10. CONTRACTOR SHALL BE REQUIRED TO OBTAIN AND PAY FOR ALL PERMITS NECESSARY TO PERFORM THE WORK.
- 11.CONTRACTOR IS RESPONSIBLE FOR ALL TRAFFIC CONTROL, WHICH SHALL BE IN ACCORDANCE WITH THE REQUIREMENT OF THE CITY OF BIRMINGHAM AND THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), LATEST EDITION.
- 12. CONTRACTOR IS RESPONSIBLE FOR CONTROLLING DUST FROM THE PROJECT SO THAT IT DOES NOT POSE A HAZARD TO PEDESTRIAN AND VEHICLE TRAFFIC OR TO THE SURROUNDING BUILDING ENVIRONMENT. CONTRACTOR SHOULD CONTROL DUST SO THAT THESE AREAS ARE NOT AFFECTED BY DUST FROM THE DEMOLITION.
- 13. UNLESS OTHERWISE NOTED, ALL UTILITIES OUTSIDE THE PROPERTY LINE ARE TO REMAIN AND FUNCTION THROUGHOUT THE DEMOLITION PROCESS. THE CONTRACTOR IS RESPONSIBLE FOR FIELD LOCATING SAID UTILITIES PRIOR TO THE DEMOLITION PROCESS.
- 14. THE CONTRACTOR SHALL KEEP THE PROJECT AREA FREE FROM LOOSE OR BLOWABLE DEBRIS AT ALL TIMES.

 MATERIALS SHALL BE SECURED SO THAT THEY WILL NOT BE BLOWN BY THE WIND ONTO AIRFIELD SURFACES. SPECIAL ATTENTION TO DUST CONTROL WILL BE REQUIRED WHEN EARTHWORK, PAVEMENT DEMOLITION, OR HAULING OPERATIONS ARE IN PROGRESS OR WHEN WIND AND SEVERE WEATHER CONDITIONS CAUSE EXCESSIVE BLOWING OF DUST. IN THIS REGARD, THE CONTRACTOR SHALL APPLY WATER OR CALCIUM CHLORIDE SOLUTION TO THE AFFECTED SITES DIRECTLY.
- 15. CONTRACTOR MUST PROVIDE A WORKING VACUUM OR BROOM TRUCK ONSITE AT ALL TIMES WORK IS BEING PERFORMED ON THE PROJECT. ALL HAUL ROUTES AND AIRFIELD PAVEMENTS MUST BE SWEPT/VACUUM CLEAN AND ACCEPTED BY AIRPORT OPERATIONS PRIOR TO THE CONTRACTOR LEAVING THE SITE AT THE END OF EACH WORK
- NB: CONTRACTOR IS REQUIRED TO DISPOSE OF GENERATED DEMOLITION DEBRIS OFF AIRPORT PROPERTY AS REQUIRED BY THE CITY OF BIRMINGHAM.
- ALL WORK IS INCLUDED IN PHASE 1 (60 CALENDAR DAYS). CONTRACTOR SHALL COORDINATE WORK SEQUENCING AND ACCESS TO MAINTAIN SAFETY AND OPERATIONS.

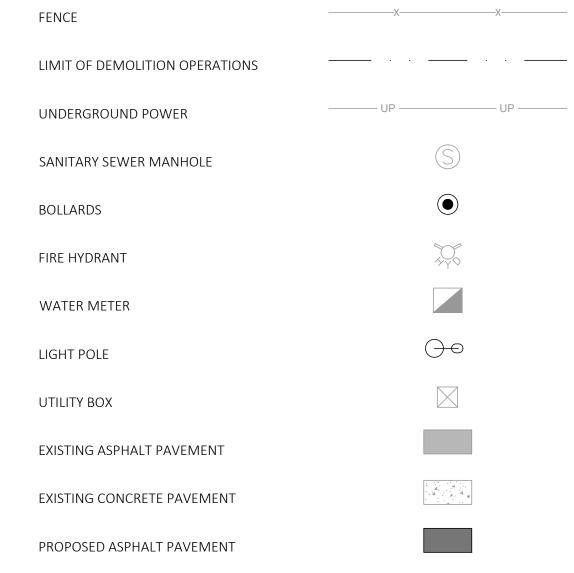
LEGEND

DATE	/	9/8/2025		
DESCRIPTION	NOT FOR CONSTRUCTION	FINAL DESIGN (EXC. ELECTRICAL)		
MARK				
JMBER:	00090)25	


SARCOR, LL (215 19 ST N, SUITE 101 BIRMINGHAM, AL 35203

DJB

BIRMINGHAM AIRPORT AUTHORITY DOLLAR CAR RENTAL BUILDING DEMOLITION 5600 AIRLINE DRIVE BIRMINGHAM. AL 35212


SHEET
C-2.0
DEMOLITION PLAN

- 1. ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PLANS AND SITE WORK SPECIFICATIONS AND SHALL COMPLY WITH APPLICABLE FEDERAL, STATE AND LOCAL CODES.
- TOPOGRAPHIC BOUNDARY SURVEY, PROPERTY LINES, LEGAL DESCRIPTION, EXISTING UTILITIES, SITE TOPOGRAPHY WITH SPOT ELEVATIONS, OUTSTANDING PHYSICAL FEATURES, AND EXISTING STRUCTURE LOCATIONS WAS PROVIDED BY EDT, INC. SARCOR LLC IS NOT RESPONSIBLE FOR THE ACCURACY.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR REPAIR OF ANY DAMAGE TO ANY EXISTING IMPROVEMENTS, ONSITE OR OFF SITE, SUCH AS PAVEMENT, UTILITIES, STORM DRAINAGE, ETC. THE REPAIR MUST BE APPROVED BY THE ENGINEER AND BE EQUAL OR BETTER THAN EXISTING CONDITIONS.
- 4. CONTRACTOR SHALL OBTAIN ALL PERMITS BEFORE CONSTRUCTION BEGINS.
- 5. ANY DEVIATION IN THESE PLANS MAY CAUSE THE WORK TO BE UNACCEPTABLE.
- 6. ANY UNANTICIPATED CONDITIONS ENCOUNTERED DURING THE CONSTRUCTION PROCESS SHALL BE IDENTIFIED AND THE ENGINEER NOTIFIED IMMEDIATELY.

LEGEND

0	,,	,,,,,	В	A	",,	
"Hilling	*	No	132/E\$S	428	× /-	111111
1111	The state of the s	9/	GINE	ER	to:	1111
	_	2	omi	111.		

JECT NUMBER:	MARK	DESCRIPTION	DATE
E-01-06000		NOT FOR CONSTRUCTION	//
		FINAL DESIGN (EXC. ELECTRICAL)	9/8/2025
E DATE:			
9/8/2025			
,0			


SARCOR, LLC
215 19 ST N, SUITE 101
BIRMINGHAM, AL 35203

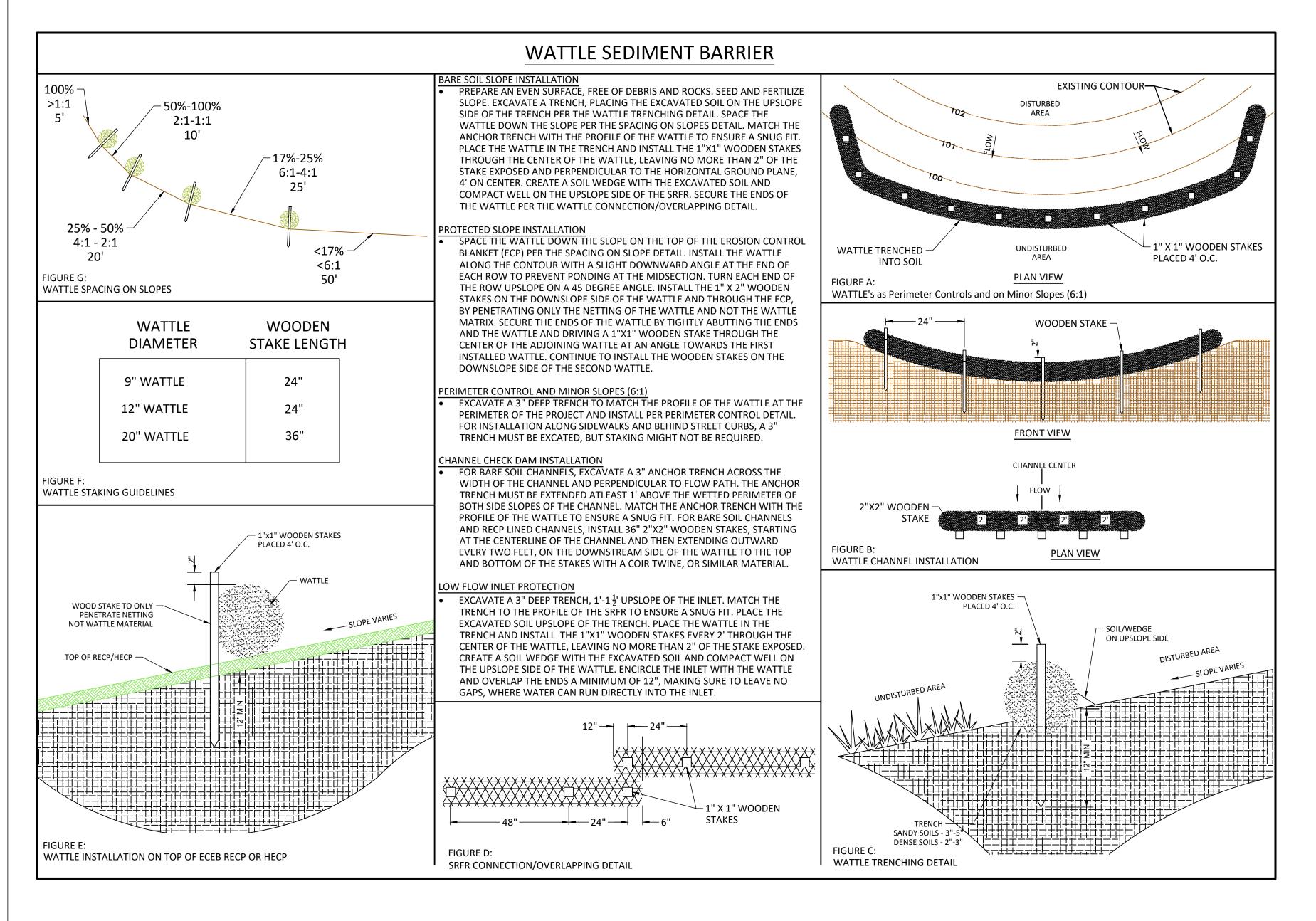
DJB

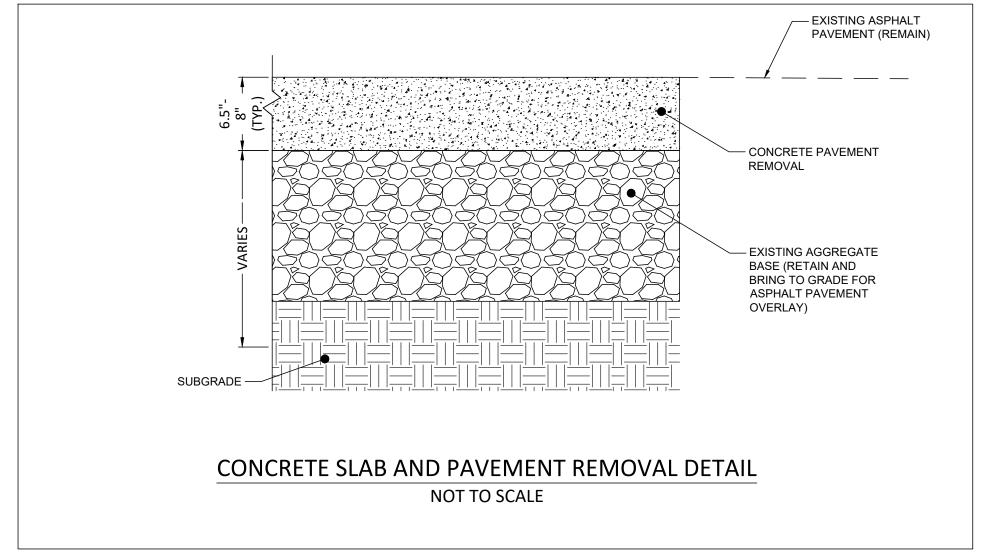
BIRMINGHAM AIRPORT
AUTHORITY
DOLLAR CAR RENTAL
BUILDING DEMOLITION
5600 AIRLINE DRIVE

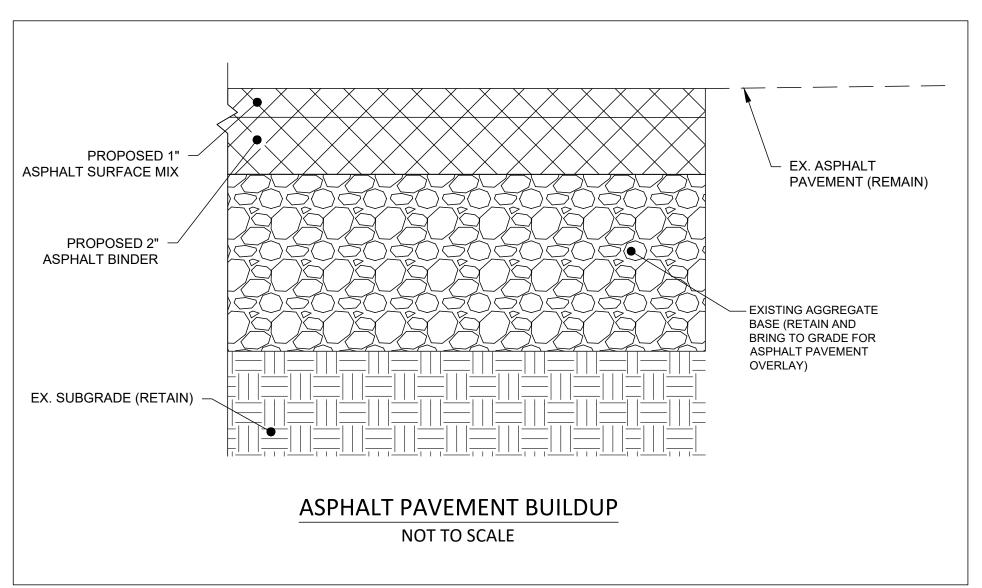
SHEET C-3.0 SITE PLAN

DESCRIPTION NOT FOR CONSTRUCTION FINAL DESIGN (EXC. ELECTRICAL)	

- 1. DEMOLITION OPERATIONS SHALL BE CONDUCTED IN SUCH A MANNER AS TO MINIMIZE EROSION.
- 2. WATTLES SHALL BE INSTALLED BEFORE DEMOLITION OPERATIONS BEGINS AND REMAIN UNTIL SUBSTANTIAL COMPLETION.
- 3. WATTLES SHALL BE REMOVED AFTER SITE STABILIZATION AND PRIOR TO SUBSTANTIAL COMPLETION.
- 4. THE CONTRACTOR IS RESPONSIBLE FOR THE REMOVAL OF SEDIMENT THAT HAS BEEN TRANSPORTED ONTO PAVED OR PUBLIC ROADS. AT A MINIMUM, TRACKING SHALL BE CLEANED BY THE END OF EACH WORK DAY.
- 6. THE EROSION AND SEDIMENT BMPs ARE TO BE REGULARLY INSPECTED AFTER 0.75" RAIN (WITHIN 24 HRS) OR MONTHLY.


LEGEND


FENCE	XX
LIMIT OF DEMOLITION OPERATIONS	
UNDERGROUND POWER	——— UP ———— UP ———
SANITARY SEWER MANHOLE	S
BOLLARDS	
FIRE HYDRANT	
WATER METER	
LIGHT POLE	\bigcirc \leftarrow
UTILITY BOX	
EXISTING ASPHALT PAVEMENT	
EXISTING CONCRETE PAVEMENT	
WATTLES	


- 10	DRAWN BY:	D.IB	
TOOK, LLC		5 19 ST N, SUITE 101	MINGHAM, AL 35203

	SARCOF	215 19 ST N, §	BIRMINGHAM ,	
)	ITAL	NOIL	J N	5212

SHEET C-4.0 EROSION CONTROL PLAN

SARCOR, LLC	215 19 ST N, SUITE 101	BIRMINGHAM, AL 35203

BIRMINGHAM AIRPORT AUTHORITY DOLLAR CAR RENTAL BUILDING DEMOLITION 5600 AIRLINE DRIVE BIRMINGHAM, AL 35212

SHEET
C-5.0
DETAIL
DRAWINGS